
Object-orientation as Composite
Structure:

(Onto)Logical Object-orientation

Conrad Bock,
U.S. National Institute of Standards and Technology

Charles Galey
Lockheed Martin

2

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

Behavior as Composite Structure
Presentation Stack

3

Onto State Machines
(next meeting)

Onto Behavior Basics
(ad/2018-03-02)

Onto Interactions
(ad/18-06-11)

Onto OO
(this one)

4

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

General Problem
 UML has three behavior diagrams.

– Activity, state, interaction.
 Very little integration or reuse between

them.
– Three underlying metamodels.
– Three representations of temporal order.

 Triples the effort of learning UML and
building analysis tools for it.

5

General Solution
 Treat behaviors as assemblies of

other behaviors.
– Like objects are assemblies of other

objects.
 Assembly = UML internal structure

– Pieces represented by properties.
– Put together by connectors.

 Put all behavior diagrams on the
same underlying behavior assembly
model.

6

stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction

Behaviors as Composite Structure

7

sd ABS_ActivationSequence [Sequence Diagram]

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

State Machine

Interaction

Property

Connector

Property

Connector

Property

Connector

Behavior: What’s Being Modeled?

 “Things” that occur in time
– Eg, taking a picture, focusing, etc.
– Not “behaviors”, “actions”, etc.

8

Focus
3/15/09 10-11amET :

TakePicture
3/15/09 10-12pmET :

Real,
Simulated,
or Desired

Things Being
Modeled (M0)

Shoot
3/15/0911-12pmET :

Not instance
specs.

Behavior: What’s in Common?

 They happen before or during each
other.
– Construct M1 library for this.
– Use it to classify things being modeled. 9

Things Being
Modeled (M0)

happens
During-1 Focus

3/15/09 10-11amET :
TakePicture

3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

happensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

happens
During-1

Behavior: Use Library

 Specialize library classes and
subset/redefine library properties. 10

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11amET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

User Model
(M1)

step2

TakePicture

step1 : Focus step2 : Shoot
: HappensBefore

{subsets}

Behavior: Too repetitive at M1?

 Capture M1 patterns in M2 elements.
– Tools apply patterns automatically.

11

Property

type

owned
Property

Connector
role

type

fromStep

toStep

owned
Connector

Association

Class

Step
ownedStep

Behavior

{redefines}

Metamodel
(M2)

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11amET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

User Model
(M1)

step2

TakePicture

step2 : Shoot
: HappensBefore

Succession

step1 : Focus

12

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

Interactions Problem

13

sd ABS_ActivationSequence

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

SysML Internal
Block Diagram

Interaction

Object
Flow

Item Flow
Message

Interactions Requirements
1. Between things that outlive interactions.

– Objects have many interactions over time.
– Not just between steps in an activity.

2. Interactions are reusable and composable.
– The same kind of interaction might be used in

many user models and
– contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.
– Things being exchanged leave and arrive at

specified places in the interacting objects.
– Aka, output/inputs. 14

Transfers (M1)

transferredThing

[1..*]

sourceThing

targetThing

Model
(M1)

transferredThing

Transfer

{redefines}

Standard
Model Library

Things
Being
Modeled
(M0)

transferredThing

sourceThing

targetThing

Product

Any
Thing

Store654:

John’sHouse:

Product Transfer

Product Transfer
3/15/09 10-12pmET :

User Model

Behavior
Occurrence

Stove234:

15

involves

*{subsets}

Interactions (M2)

transferredThing

[1..*]

sourceThing

targetThing

Model
(M1)

transferredThing

Transfer

{redefines}

Standard
Model Library

Product

Any
Thing

Product TransferUser Model 16

involves

*{subsets}

Metamodel
(M2)

Class
/typeofThingTransferred

*

Behavior

Interaction

Class owned
Property

*

Property

participant
Property *

{subsets}

involves
Property

*

{subsets}

Behavior
Occurrence

M1 property at tail of
arrow is value of M2
property at head of
the arrow.
Not instance links

Transfers Along Connectors?

 Connectors are typed by associations.
– But transfers are behaviors.

17

sd ABS_ActivationSequence

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

Interaction

Property

Connector

Property

Connector

Property

ConnectorSysML Internal
Block Diagram

18

Interaction = Behavior & Association
 Associations and behaviors both have

objects that participate in them.
– Associations link their participants.
– Behaviors involve their objects.

• Interactions have lifelines.
• Activities have object nodes, partitions, etc.
• Behaviors have parameters.

 Interactions are behaviors that are also
associations between their participants.

Links (M1) & Associations (M2)

19

linkedThing
{non-unique}

[2..*] {subsets}

Standard
Model Library

Camera 34 : Cntrl 12 :

Camera

Controller

conCam

camCon

linkedConlinkedCam Link 251 :

Controls
linkedCam : Camera {redefines linkedTarget }
linkedCon: Controller {redefines linkedSource}

conCam camCon

Things Being
Modeled (M0)

User Model

Class
owned

Property
*

participant
Property

*

Property
Association

Metamodel
(M2)

M1 property at tail of
arrow is value of M2
property at head of
the arrow.
Not instance links

{subsets}

Model
(M1)

Anything Link

20

Transfers as Links (M1)

transferredThing

[1..*]

sourceThing

targetThing

Product Transfer Product
transferredThing

Any
Thing

Link

Transfer

{redefines}

linkedThing
{non-unique}

[2..*]

{subsets}

Behavior
Occurrence

involves

*

{subsets}

Model
(M1)

Standard
Model Library

User Model

Things
Being
Modeled
(M0)

transferredThing

sourceThing

targetThing

Store654:

John’sHouse:

Product Transfer
3/15/09 10-12pmET :

Stove234:

21

Interaction Participants (M2)

Metamodel
(M2)

Class
typeofThingTransferred

Behavior

Interaction

participant
PropertyAssociation

participant
Property

{redefines}

involves
Property

M1 property at tail
of arrow is value of
M2 property at head
of the arrow.
Not instance links

transferredThing

[1..*]

sourceThing

targetThing

Product Transfer Product
transferredThing

Any
Thing

Link

Transfer

{redefines}

linkedThing

[2..*]

{subsets}

Behavior
Occurrence

involves

*

{subsets}

Model
(M1)

Standard
Model Library

User Model

typeOfThingT
should be on

Connectors Reusing Interactions

22

owned
Connector

*
type

{redefines}

Metamodel
(M2) Connector

type
Interaction

owned
Property

* Property

Class

Things Being
Modeled (M0)

User Model
(M1)

DeliverProduct :

deliverTo :
pt : ProductTransfer

pickupFrom :

pickupFrom

deliverTo

Store654:

John’sHouse:
pt

Product Delivery
3/15/09 9-1pmET :

owned
Flow

* Flow

{subsets}

{subsets}

transferredThing

Stove234:

Product Transfer
3/15/09 10-12pmET :

Class

Association

ownedStep
*

owned
Property

*

23

Flow Steps

Metamodel
(M2)

Model
(M1)

Interaction

CapturePicture

Confirmation

Command Picture

: Happens
Before

: HappensBefore

fcntl : Flight
Control

fdb : Flight
Database

sc:
Spacecraft

Property role

earlierStep

laterStep

AssociationClass

Behavior

{redefines}

type
type

Connector

type

happens
Before

Standard
Model LibraryUser Model

Succession

Behavior
Occurrence

Step

Flow

Transfer

type
{redefines}

24

Flows & Out/Inputs (OF)

TakePicture : Activity

Exposure

Metamodel
(M2)

Model
(M1)

sourceOutputProperty
[1..*] {ordered,

non-unique}

targetInputProperty
[1..*] {ordered,

non-unique}

Class
typeOfThing

Flowing
[1..*] {ordered,

non-unique}

step2 : Shoot
in xfs: Exposure

step1 : Focus
out xrsl : Exposure

Property

M1 property at tail of
arrow is value of M2
property at head of
the arrow.
Not instance links

Instances
(M0)

TakePicture 3/15/09 10-12pmET :

step1 step2

Shoot Occ 1 :
in xfs = Exp123

Focus Occ 1:
out xrsl = Exp123 : HappensBefore

: ExposureTransfer

Connector

Flow
Item
Flow

25

Flows & Out/Inputs (FP)

Metamodel
(M2)

Model
(M1)

sourceOutputProperty
[1..*] {ordered,

non-unique}

targetInputProperty
[1..*] {ordered,

non-unique}

Class
typeOfThing
Transferred

[1..*] {ordered,
non-unique}

Item
Flow

Property
M1 property at tail of
arrow is value of M2
property at head of
the arrow.
Not instance links

CapturePicture : Interaction

fcntl : Flight Control
in confRec: Confirmation

fdb : Flight Database
out confSend : Confirmation

sc:
Spacecraft

Confirmation

Command Picture

26

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

OO Problems in UML/SysML
 Encapsulated and “surfaced” behaviors

modeled differently.
– Namespace ownership for encapsulated

behaviors (methods).
– Operations for surfaced behaviors.

 Method specialization (“override”)
doesn’t use generalization / inheritance.

27

OO Problems in UML/SysML
 Interfaces (service “bundles”)

– Missing supported interactions.
• Expected order of operation calls, signal receipts,

flowing property values.
– Redundantly specified on both ends of

interactions (eg, conjugation).
– Need ports to distinguish interfaces uses.
– Redundant model of behavior abstraction

• Specify input/outputs of surfaced behaviors (ie,
they abstract those behaviors).

• But UML interface realization not generalization.
28

OO Requirements

29

1. Behavior encapsulation
– “Surfaced” behaviors (no steps)

2. Behavior inheritance
3. Protocols

– Expected order of using surfaced
behaviors.

30

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

Properties of Objects
for Behavior Occurrences

 Values of these properties are executions
(occurrences, M0 instances) of behaviors.
 For example, classifier behavior executions.31

Model
(M1)

Camera

: Store

: Backup

: Happens
Before

: Take
Picture

Picture

: TakePic&Bkup

: Choose
Subject

Location

: Camera

Connecting Behavior Occurrence
Properties Across Objects

 Behaviors not encapsulated.
– Controller specifies “how” picture is taken.
– Compare to activity partitions.

 Controller should only specify inputs and
outputs for camera and disk behaviors.

32

Model
(M1)

Camera&DiskController

Picture

: Disk

: Store

: Finish : Backup
: Take

Picture

: Choose
Subject

Lo
ca

tio
n

: Camera

Encapsulating Behaviors

 External behavior properties (operations)
– Types only “expose” inputs and outputs.
– Have same executions (equal values) as

internal behavior properties (methods).
 (Not ports)

33

Model
(M1)

Camera&DiskController

Picture

: Disk

: Take
Picture

=

: TakePicture
: Store

: Backup

: Store&Backup

: Store&Backup

=

: Finish: Choose
Subject

Location

External Behaviors

34

Model
(M1)

Things Being
Modeled (M0)

step1 : Focus step2 : Shoot

TakePicture

TakingPic1
3/15/09 2pmET :

TakingPic2
4/19/09 1amET :

TakingPic3
2/5/10 8pmET :

Metamodel
(M2) Behavior

TakePicture

Generalization Class

Implements Surface
Behavior

Operations

35

Camera

tp : Take
Picture

=

tps :
TakePicture

Surface
Behavior

Class Behavior

owned
Property

type

Operation type

Things Being
Modeled (M0)

TakingPic1
3/15/09 2pmET :Mary’sCam tp

tps

TakePicture

TakePicture

Property

Model
(M1)

Metamodel
(M2)

Behavior Invocation

 “Calls” are behaviors that constrain
surrounding successions and item flows.
– Specify whether to wait for return

(synchronous/asynchronous calls).
– Have no steps (“no-ops”).

36

Model
(M1)

Controller : Object

: Camera : Disk: TakePicture&Store

Picture

: Take
Picture

Picture

Picture

: CallStore
&Backup

: Finish
: ChooseSubject

: Store&
Backup

: CallTake
Picture

Location

Location

37

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

Specializing Methods

 Not OO “overriding”:
– Specialized methods cannot remove inherited

elements, only specialize them.
– Use general methods for commonality among

implementations
38

Camera

tp : TakePicture
= tps :

TakePicture

TakePicture

TakePicture

CameraA

^tp : TakeInfraredPicture
^=

^tps :
TakePicture

TakeInfrared
Picture

39

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

OO View of Interactions
 Objects support interactions by

providing “services” (including data).
– UML added services required of other

objects.
 Object models (classes) typically do

not specify the interactions they
support.
– Only services “surfaced” to the outside.
– Except for UML’s protocol state

machines.
40

OO & Interaction Approaches

41
Interaction

Object

Ports
& Interfaces

Object

Ports
& Interfaces

Participant Role Participant Role
Object Object

Protocols for Using Operations

 Protocol:
– Power must be turned on before taking picture.
– Multiple pictures can be taken.
– Power must be turned off after the last picture

is taken. 42

: TakePicture

: PowerOn

: PowerOff

=

=

=

Camera

Protocol as Interaction

43

CameraTakePicture : Interaction

Picture

device
: Camera

: Take
Picture

: PowerOn

: PowerOff

Model
(M1)

callPowerOn :

callPowerOff :

controller :

: CallTakePicture

: CallPowerOn

: CallPowerOff

Location

Protocol as Interaction (M2)

44

protocol

*

Connector

Succession Item Flow

Succession Flow

CameraTakePicture

device
: Camera

controller :Model
(M1)

Metamodel
(M2) Class

protocol
Camera

Interaction

callPowerOn :

Picture

callPowerOff :

Location

Using Interaction Protocols

45

Model
(M1)

SLRPhotography : Interaction

cam :
SLRCamera

photographer :
Person

CameraTakePicture

device
: Camera

controller :

callPowerOn :

Picture

callPowerOff :

Location

46

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

OO Interfaces

 Could use as interaction participant types.
47

Camera

^ : TakePicture

^ : PowerOn

^ : PowerOff

=

=

=

Metamodel
(M2)

Generalization Class

Surface
Class

Behavior properties
are all operations.

Camera

: TakePicture

: PowerOn

: PowerOff

Provides /
Realizes

Model
(M1)

OO Protocols

 Defined without external objects.
48

Model
(M1)

Camera

: TakePicture

: PowerOn : PowerOff: HappensBefore

: Happens
Before

: Happens
Before

: HappensBefore

Conjugation

 UML required operations = service
requests sent to external objects.

49

CameraOperator

«required»
: CallTakePicture

«required»
: CallPowerOn

«required»
: CallPowerOff

OO Inputs and Outputs

50

Model
(M1)

Things Being
Modeled (M0)

subject

result
Location

Picture

step1 : Focus step2 : Shoot

TakePicture

^subject :
Location

^result :
Picture

TakingPic1
3/15/09 2pmET :

TakingPic2
4/19/09 1amET :

TakingPic3
2/5/10 8pmET :

Metamodel
(M2)

inputProperty

*outputProperty

*

Property

ownedProperty

*

Behavior

TakePicture

I/O only.

Generalization Class

Implements Surface
Behavior

M1 property at tail of
arrow is value of M2
property at head of
the arrow.
Not instance links

Multiple OO Interfaces

 Connector uses both interfaces or one?
– If one, which? 51

SLRPhotography : Interaction

cam :
SLRCamera

photographer :
Person

Camera
CameraTP

operations
: PowerOn
:TakePicture
:PowerOff

CameraDE
operations

: Download
: Erase

Port for Each OO Interface

 Typed by interfaces, not operations.
 Raises questions:

– Are ports separate from objects they’re on?
– If separate, are they internal or external parts?
– Tied up an entire SysML RTF. 52

SLRPhotography : Interaction

cam :
SLRCamera

photographer :
Person

: CameraTP

printer : Person
: CameraDE

Multiple Interaction Protocols

 Connectors typed by different interactions.
– Ports not needed. 53

Model
(M1)

SLRPhotography : Interaction

CameraTPInteraction

device
: Camera

controller :

callPowerOn :

Picture

callPowerOff :

Location

CameraDEInteraction

device
: Camera

controller :

Picture

callErase :

cam :
SLRCamera

photographer :
Person

printer : Person

callDownload :

Multiple Ports for Same Interface

 Object can interact differently based on
port used.
– Better to define with separate interactions.

 If same interaction, use correlation (BPMN).
 Not possible with interaction protocols. 54

SLRPhotography : Interaction

cam :
SLRCamera

photographer :
Persontp-photo :

CameraTP

tester : Persontp-test :
CameraTP

55

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– OO behavior, requirements

 OO Behavior Solution
1. Behavior encapsulation
2. Behavior inheritance
3. Protocols (interaction and OO)

 Summary

Summary
 Unify OO behavior using

– Properties for operations and methods
– Inheritance for “overriding” methods.

 Simplify protocol modeling with
– Interactions instead of OO interfaces & ports.

 Speeds learning and analysis integration.

56

More Information
 Intro to Behavior as Composite Structure

– http://doc.omg.org/ad/2018-03-02
 Interaction as Composite Structure

– http://doc.omg.org/ad/18-06-11
 Additional slides

– Starts with onto, includes interactions.
– http://conradbock.org/bock-ontological-behavior-

modeling-jpl-slides.pdf
 Paper: http://dx.doi.org/10.5381/jot.2011.10.1.a3

 Application to BPMN:http://conradbock.org/#BPDM

 KerML: Contact Chas Galey charles.e.galey@lmco.com57

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
mailto:charles.e.galey@lmco.com

	Object-orientation as Composite Structure:�(Onto)Logical Object-orientation
	Overview
	Behavior as Composite Structure Presentation Stack

	Behavior Review
	General Problem
	General Solution
	Behaviors as Composite Structure
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Interactions Review
	Interactions Problem
	Interactions Requirements
	Transfers (M1)
	Interactions (M2)
	Transfers Along Connectors?
	Interaction = Behavior & Association
	Links (M1) & Associations (M2)
	Transfers as Links (M1)
	Interaction Participants (M2)
	Connectors Reusing Interactions
	Flow Steps
	Flows & Out/Inputs (OF)
	Flows & Out/Inputs (FP)

	OO Behavior, Requirements
	OO Problems in UML/SysML
	OO Problems in UML/SysML
	OO Requirements

	OO Behavior, Solution
	OO Behavior, Encapsulation
	Properties of Objects�for Behavior Occurrences
	Connecting Behavior Occurrence Properties Across Objects
	Encapsulating Behaviors
	External Behaviors
	Operations
	Behavior Invocation

	OO Behavior, Inheritance
	Specializing Methods

	Protocols
	OO and Interaction Compared
	OO View of Interactions
	OO & Interaction Approaches

	Interaction Protocols
	Protocols for Using Operations
	Protocol as Interaction
	Protocol as Interaction (M2)
	Using Interaction Protocols

	OO Protocols
	OO Interfaces
	OO Protocols
	Conjugation
	OO Inputs and Outputs
	Multiple OO Interfaces
	Port for Each OO Interface
	Multiple Interaction Protocols
	Multiple Ports for Same Interface

	Summary
	More Information

