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General Problem
 UML has three behavior diagrams.

– Activity, state, interaction.
 Very little integration or reuse between 

them.
– Three underlying metamodels.
– Three representations of temporal order.

 Triples the effort of learning UML and 
building analysis tools for it.
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General Solution
 Treat behaviors as assemblies of 

other behaviors.
– Like objects are assemblies of other 

objects.
 Assembly = UML internal structure

– Pieces represented by properties.
– Put together by connectors.

 Put all behavior diagrams on the 
same underlying behavior assembly 
model.
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stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction

Behaviors as Composite Structure
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sd ABS_ActivationSequence [Sequence Diagram]

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

State Machine

Interaction

Property

Connector

Property

Connector

Property

Connector



Behavior: What’s Being Modeled?

 “Things” that occur in time
– Eg, taking a picture, focusing, etc.
– Not “behaviors”, “actions”, etc.
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Focus
3/15/09 10-11amET :

TakePicture
3/15/09 10-12pmET :

Real,
Simulated, 
or Desired

Things Being
Modeled (M0)

Shoot
3/15/0911-12pmET :

Not instance
specs.



Behavior: What’s in Common?

 They happen before or during each 
other.
– Construct M1 library for this.
– Use it to classify things being modeled. 9

Things Being
Modeled (M0)

happens
During-1 Focus

3/15/09 10-11amET :
TakePicture

3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

happensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

happens
During-1



Behavior: Use Library

 Specialize library classes and 
subset/redefine library properties. 10

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11amET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

User Model
(M1)

step2

TakePicture

step1 : Focus step2 : Shoot
: HappensBefore

{subsets}



Behavior: Too repetitive at M1?

 Capture M1 patterns in M2 elements.
– Tools apply patterns automatically.
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Property

type

owned
Property

Connector
role

type

fromStep

toStep

owned
Connector

Association

Class

Step
ownedStep

Behavior

{redefines}

Metamodel
(M2)

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11amET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

User Model
(M1)

step2

TakePicture

step2 : Shoot
: HappensBefore

Succession

step1 : Focus
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Interactions Problem
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sd ABS_ActivationSequence

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

SysML Internal 
Block Diagram

Interaction

Object
Flow

Item Flow
Message



Interactions Requirements
1. Between things that outlive interactions.

– Objects have many interactions over time.
– Not just between steps in an activity.

2. Interactions are reusable and composable.
– The same kind of interaction might be used in 

many user models and
– contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.
– Things being exchanged leave and arrive at 

specified places in the interacting objects.
– Aka, output/inputs. 14



Transfers (M1)

transferredThing

[1..*]

sourceThing

targetThing

Model
(M1)

transferredThing

Transfer

{redefines}

Standard
Model Library

Things
Being
Modeled
(M0)

transferredThing

sourceThing

targetThing

Product

Any
Thing

Store654:

John’sHouse:

Product Transfer

Product Transfer 
3/15/09 10-12pmET :

User Model

Behavior
Occurrence

Stove234:
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Interactions (M2)

transferredThing

[1..*]

sourceThing

targetThing

Model
(M1)

transferredThing

Transfer

{redefines}

Standard
Model Library

Product

Any
Thing

Product TransferUser Model 16

involves

*{subsets}

Metamodel
(M2)

Class
/typeofThingTransferred

*

Behavior

Interaction

Class owned
Property

*

Property

participant
Property *

{subsets}

involves
Property

*

{subsets}

Behavior
Occurrence

M1 property at tail of 
arrow is value of M2 
property at head of 
the arrow.
*Not instance links*



Transfers Along Connectors?

 Connectors are typed by associations.
– But transfers are behaviors.
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sd ABS_ActivationSequence

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

Interaction

Property

Connector

Property

Connector

Property

ConnectorSysML Internal 
Block Diagram
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Interaction = Behavior & Association
 Associations and behaviors both have 

objects that participate in them.
– Associations link their participants.
– Behaviors involve their objects.

• Interactions have lifelines.
• Activities have object nodes, partitions, etc.
• Behaviors have parameters.

 Interactions are behaviors that are also 
associations between their participants.



Links (M1) & Associations (M2)
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linkedThing
{non-unique}

[2..*] {subsets}

Standard
Model Library

Camera 34 : Cntrl 12 :

Camera

Controller

conCam

camCon

linkedConlinkedCam Link 251 :

Controls
linkedCam : Camera {redefines linkedTarget }
linkedCon: Controller {redefines linkedSource}

conCam camCon

Things Being
Modeled (M0)

User Model

Class
owned

Property
*

participant
Property

*

Property
Association

Metamodel
(M2)

M1 property at tail of 
arrow is value of M2 
property at head of 
the arrow.
*Not instance links*

{subsets}

Model
(M1)

Anything Link
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Transfers as Links (M1)

transferredThing

[1..*]

sourceThing

targetThing

Product Transfer Product
transferredThing

Any
Thing

Link

Transfer

{redefines}

linkedThing
{non-unique}

[2..*]

{subsets}

Behavior
Occurrence

involves

*

{subsets}

Model
(M1)

Standard
Model Library

User Model

Things
Being
Modeled
(M0)

transferredThing

sourceThing

targetThing

Store654:

John’sHouse:

Product Transfer 
3/15/09 10-12pmET :

Stove234:
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Interaction Participants (M2)

Metamodel
(M2)

Class
typeofThingTransferred

Behavior

Interaction

participant
PropertyAssociation

participant
Property

{redefines}

involves
Property
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of arrow is value of 
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of the arrow.
*Not instance links*
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Connectors Reusing Interactions
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owned
Connector

*
type

{redefines}

Metamodel
(M2) Connector

type
Interaction

owned
Property

* Property

Class

Things Being
Modeled (M0)

User Model
(M1)

DeliverProduct :

deliverTo :
pt : ProductTransfer

pickupFrom :

pickupFrom

deliverTo

Store654:

John’sHouse:
pt

Product Delivery 
3/15/09 9-1pmET :

owned
Flow

* Flow

{subsets}
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transferredThing

Stove234:

Product Transfer 
3/15/09 10-12pmET :

Class

Association



ownedStep
*

owned
Property

*
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Flow Steps

 

Metamodel
(M2)

Model
(M1)

Interaction

CapturePicture

Confirmation

Command Picture

: Happens
Before

: HappensBefore

fcntl : Flight
Control

fdb : Flight
Database

sc: 
Spacecraft

Property role

earlierStep

laterStep

AssociationClass

Behavior

{redefines}

type
type

Connector

type

happens
Before

Standard
Model LibraryUser Model

Succession

Behavior
Occurrence

Step

Flow

Transfer

type
{redefines}
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Flows & Out/Inputs (OF)

TakePicture : Activity

Exposure

Metamodel
(M2)

Model
(M1)

sourceOutputProperty
[1..*] {ordered,

non-unique}

targetInputProperty
[1..*] {ordered,

non-unique}

Class
typeOfThing

Flowing
[1..*] {ordered,

non-unique}

step2 : Shoot
in xfs: Exposure

step1 : Focus
out xrsl : Exposure

Property

M1 property at tail of 
arrow is value of M2 
property at head of 
the arrow.
*Not instance links*

Instances
(M0)

TakePicture 3/15/09 10-12pmET :

step1 step2

Shoot Occ 1 :
in xfs = Exp123

Focus Occ 1:
out xrsl = Exp123 : HappensBefore

: ExposureTransfer

Connector

Flow
Item
Flow
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Flows & Out/Inputs (FP)

Metamodel
(M2)

Model
(M1)

sourceOutputProperty
[1..*] {ordered,

non-unique}

targetInputProperty
[1..*] {ordered,

non-unique}

Class
typeOfThing
Transferred

[1..*] {ordered,
non-unique}

Item
Flow

Property
M1 property at tail of 
arrow is value of M2 
property at head of 
the arrow.
*Not instance links*

CapturePicture : Interaction

fcntl : Flight Control
in confRec: Confirmation

fdb : Flight Database
out confSend : Confirmation

sc: 
Spacecraft

Confirmation

Command Picture
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OO Problems in UML/SysML
 Encapsulated and “surfaced” behaviors 

modeled differently.
– Namespace ownership for encapsulated 

behaviors (methods).
– Operations for surfaced behaviors.

 Method specialization (“override”) 
doesn’t use generalization / inheritance.

27



OO Problems in UML/SysML
 Interfaces (service “bundles”)

– Missing supported interactions.
• Expected order of operation calls, signal receipts, 

flowing property values.
– Redundantly specified on both ends of 

interactions (eg, conjugation).
– Need ports to distinguish interfaces uses.
– Redundant model of behavior abstraction

• Specify input/outputs of surfaced behaviors (ie, 
they abstract those behaviors).

• But UML interface realization not generalization.
28



OO Requirements

29

1. Behavior encapsulation
– “Surfaced” behaviors (no steps)

2. Behavior inheritance
3. Protocols

– Expected order of using surfaced 
behaviors.
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Properties of Objects
for Behavior Occurrences

 Values of these properties are executions 
(occurrences, M0 instances) of behaviors.
 For example, classifier behavior executions.31

Model
(M1)

Camera

: Store

: Backup

: Happens
Before

: Take
Picture

Picture

: TakePic&Bkup

: Choose
Subject

Location



: Camera

Connecting Behavior Occurrence 
Properties Across Objects

 Behaviors not encapsulated.
– Controller specifies “how” picture is taken.
– Compare to activity partitions.

 Controller should only specify inputs and 
outputs for camera and disk behaviors.

32

Model
(M1)

Camera&DiskController

Picture

: Disk

: Store

: Finish : Backup
: Take

Picture

: Choose
Subject

Lo
ca

tio
n



: Camera

Encapsulating Behaviors

 External behavior properties (operations)
– Types only “expose” inputs and outputs.
– Have same executions (equal values) as 

internal behavior properties (methods).
 (Not ports)
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Model
(M1)

Camera&DiskController

Picture

: Disk

: Take
Picture

=

: TakePicture
: Store

: Backup

: Store&Backup

: Store&Backup

=

: Finish: Choose
Subject

Location



External Behaviors
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Model
(M1)

Things Being
Modeled (M0)

step1 : Focus step2 : Shoot

TakePicture

TakingPic1
3/15/09 2pmET :

TakingPic2
4/19/09 1amET :

TakingPic3
2/5/10 8pmET :

Metamodel
(M2) Behavior

TakePicture

Generalization Class

Implements Surface
Behavior



Operations
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Camera

tp : Take
Picture

=

tps : 
TakePicture

Surface
Behavior

Class Behavior

owned
Property

type

Operation type

Things Being
Modeled (M0)

TakingPic1
3/15/09 2pmET :Mary’sCam tp

tps

TakePicture

TakePicture

Property

Model
(M1)

Metamodel
(M2)



Behavior Invocation

 “Calls” are behaviors that constrain 
surrounding successions and item flows.
– Specify whether to wait for return 

(synchronous/asynchronous calls).
– Have no steps (“no-ops”).
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Model
(M1)

Controller : Object

: Camera : Disk: TakePicture&Store

Picture

: Take
Picture

Picture

Picture

: CallStore
&Backup

: Finish
: ChooseSubject

: Store&
Backup

: CallTake
Picture

Location

Location
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Specializing Methods

 Not OO “overriding”:
– Specialized methods cannot remove inherited 

elements, only specialize them.
– Use general methods for commonality among 

implementations
38

Camera

tp : TakePicture
= tps : 

TakePicture

TakePicture

TakePicture

CameraA

^tp : TakeInfraredPicture
^=

^tps : 
TakePicture

TakeInfrared
Picture
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OO View of Interactions
 Objects support interactions by 

providing “services” (including data).
– UML added services required of other 

objects.
 Object models (classes) typically do 

not specify the interactions they 
support.
– Only services “surfaced” to the outside.
– Except for UML’s protocol state 

machines.
40



OO & Interaction Approaches

41
Interaction

Object

Ports
& Interfaces

Object

Ports
& Interfaces

Participant Role Participant Role
Object Object



Protocols for Using Operations

 Protocol:
– Power must be turned on before taking picture.
– Multiple pictures can be taken.
– Power must be turned off after the last picture 

is taken. 42

: TakePicture

: PowerOn

: PowerOff

=

=

=

Camera



Protocol as Interaction
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CameraTakePicture : Interaction

Picture

device
: Camera

: Take
Picture

: PowerOn

: PowerOff

Model
(M1)

callPowerOn :

callPowerOff :

controller :

: CallTakePicture

: CallPowerOn

: CallPowerOff

Location



Protocol as Interaction (M2)

44

protocol

*

Connector

Succession Item Flow

Succession Flow

CameraTakePicture

device
: Camera

controller :Model
(M1)

Metamodel
(M2) Class

protocol
Camera

Interaction

callPowerOn :

Picture

callPowerOff :

Location



Using Interaction Protocols
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Model
(M1)

SLRPhotography : Interaction

cam :
SLRCamera

photographer : 
Person

CameraTakePicture

device
: Camera

controller :

callPowerOn :

Picture

callPowerOff :

Location
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OO Interfaces

 Could use as interaction participant types.
47

Camera

^ : TakePicture

^ : PowerOn

^ : PowerOff

=

=

=

Metamodel
(M2)

Generalization Class

Surface
Class

Behavior properties 
are all operations.

Camera

: TakePicture

: PowerOn

: PowerOff

Provides /
Realizes

Model
(M1)



OO Protocols

 Defined without external objects.
48

Model
(M1)

Camera

: TakePicture

: PowerOn : PowerOff: HappensBefore

: Happens
Before

: Happens
Before

: HappensBefore



Conjugation

 UML required operations = service 
requests sent to external objects.

49

CameraOperator

«required»
: CallTakePicture

«required»
: CallPowerOn

«required»
: CallPowerOff



OO Inputs and Outputs
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Model
(M1)

Things Being
Modeled (M0)

subject

result
Location

Picture

step1 : Focus step2 : Shoot

TakePicture

^subject :
Location

^result :
Picture

TakingPic1
3/15/09 2pmET :

TakingPic2
4/19/09 1amET :

TakingPic3
2/5/10 8pmET :

Metamodel
(M2)

inputProperty

*outputProperty

*

Property

ownedProperty

*

Behavior

TakePicture

I/O only.

Generalization Class

Implements Surface
Behavior

M1 property at tail of 
arrow is value of M2 
property at head of 
the arrow.
*Not instance links*



Multiple OO Interfaces

 Connector uses both interfaces or one?
– If one, which? 51

SLRPhotography : Interaction

cam :
SLRCamera

photographer : 
Person

Camera
CameraTP

operations
: PowerOn
:TakePicture
:PowerOff

CameraDE
operations

: Download
: Erase



Port for Each OO Interface

 Typed by interfaces, not operations.
 Raises questions:

– Are ports separate from objects they’re on?
– If separate, are they internal or external parts?
– Tied  up an entire SysML RTF. 52

SLRPhotography : Interaction

cam :
SLRCamera

photographer : 
Person

: CameraTP

printer : Person
: CameraDE



Multiple Interaction Protocols

 Connectors typed by different interactions. 
– Ports not needed. 53

Model
(M1)

SLRPhotography : Interaction

CameraTPInteraction

device
: Camera

controller :

callPowerOn :

Picture

callPowerOff :

Location

CameraDEInteraction

device
: Camera

controller :

Picture

callErase :

cam :
SLRCamera

photographer : 
Person

printer : Person

callDownload :



Multiple Ports for Same Interface

 Object can interact differently based on 
port used.
– Better to define with separate interactions.

 If same interaction, use correlation (BPMN).
 Not possible with interaction protocols. 54

SLRPhotography : Interaction

cam :
SLRCamera

photographer : 
Persontp-photo : 

CameraTP

tester : Persontp-test : 
CameraTP
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Summary
 Unify OO behavior using

– Properties for operations and methods
– Inheritance for “overriding” methods.

 Simplify protocol modeling with
– Interactions instead of OO interfaces & ports.

 Speeds learning and analysis integration.
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More Information
 Intro to Behavior as Composite Structure

– http://doc.omg.org/ad/2018-03-02
 Interaction as Composite Structure

– http://doc.omg.org/ad/18-06-11
 Additional slides

– Starts with onto, includes interactions.
– http://conradbock.org/bock-ontological-behavior-

modeling-jpl-slides.pdf
 Paper: http://dx.doi.org/10.5381/jot.2011.10.1.a3

 Application to BPMN:http://conradbock.org/#BPDM

 KerML: Contact Chas Galey charles.e.galey@lmco.com57

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
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