

State Machines as Composite Structure: (Onto)Logical State Machines Part 1

Bjorn Cole Georgia Institute of Technology

Conrad Bock, U.S. National Institute of Standards and Technology

Overview

RoadMap

Motivation

- Behavior, review
- Interactions, review
- State machines, requirements
- State Machines Solution
 - 1. Stimuli = end of transfers (events)
 - **2.** State and transition behaviors
 - **3.** Matching past events to transitions

Summary

Behavior as Composite Structure Presentation Stack

(ad/2018-03-02)

Overview

RoadMap

Motivation

- Behavior, review
- Interactions, review
- State machines, requirements
- State Machines Solution
 - 1. Stimuli = end of transfers (events)
 - **2.** State and transition behaviors
 - 3. Matching past events to transitions

Summary

General Problem

- UML has three behavior diagrams.
 - Activity, state, interaction.
- Very little integration or reuse between them.
 - Three underlying metamodels.
 - Three representations of temporal order.
- Triples the effort of learning UML and building analysis tools for it.

General Solution

- Treat behaviors as assemblies of other behaviors.
 - Like objects are assemblies of other objects.
- Assembly = UML internal structure
 - Pieces represented by properties.
 - Put together by connectors.
- Put all behavior diagrams on the same underlying behavior assembly model.

Behaviors as Composite Structure

Behavior: What's Being Modeled?

- "Things" that occur in time
 - Eg, taking a picture, focusing, etc.
 - Not "behaviors", "actions", etc.

Behavior: What's in Common?

- They happen before or during each other.
 - Construct M1 library for this.
 - Use it to classify things being modeled.

9

Behavior: Use Library

 Specialize library classes and subset/redefine library properties.

Behavior: Too repetitive at M1?

Capture M1 patterns in M2 elements.
 Tools apply patterns automatically.

11

Overview

- RoadMap
- Motivation
 - Behavior, review
 - Interactions, review
 - State machines, requirements
- State Machines Solution
 - 1. Stimuli = end of transfers (events)
 - **2.** State and transition behaviors
 - 3. Matching past events to transitions
- Summary

Interactions Problem

Interactions Requirements

- **1.** Between things that outlive interactions.
 - Objects have many interactions over time.
 - Not just between steps in an activity.
- **2.** Interactions are reusable and composable.
 - The same kind of interaction might be used in many user models and
 - contain many other interactions ordered in time.
- **3.** Interacting objects have "mailboxes".
 - Things being exchanged leave and arrive at specified places in the interacting objects.
 - Aka, output/inputs.

Transfers (M1)

Interactions (M2)

Transfers Along Connectors?

Interaction = Behavior & Association

- Associations and behaviors both have objects that participate in them.
 - Associations link their participants.
 - Behaviors involve their objects.
 - Interactions have lifelines.
 - Activities have object nodes, partitions, etc.
 - Behaviors have parameters.

 Interactions are behaviors that are also associations between their participants.

Links (M1) & Associations (M2)

Transfers as Links (M1)

20

Interaction Participants (M2)

Connectors Reusing Interactions

Flow Steps

Flows & Out/Inputs (OF)

Flows & Out/Inputs (FP)

Overview

- RoadMap
- Motivation
 - Behavior, review
 - Interactions, review
 - State machines, requirements
- State Machines Solution
 - 1. Stimuli = end of transfers (events)
 - **2.** State and transition behaviors
 - 3. Matching past events to transitions
- Summary

States of What?

- Objects, based on properties
 - Person in married state = has a spouse.
- Behaviors, based on past behavior
 - Vending machine in dispensing state after receiving selection and money states.
- UML states are mostly behaviors ...
 - -... tied to objects.
 - Weakly include object state invariants.
 - Both kinds can be in "machines" that react to external stimuli.

State Machine Problem

- UML has two ways things can react to external stimuli:
 - State Machines have transitions.
 - Activities have accept event actions.
- Very little integration or reuse.
 - Two underlying metamodels/profiles.
 - Two representations of reactions.
 - Slightly different temporal semantics.
- Doubles the effort of learning UML and building analysis tools for them.

State Machine Problem

State Machine Requirements

- 1. Must selectively react to stimuli ("events").
 - Based on kind of stimulus and ...
 - -... current & previous stimuli/reactions ("states")
- 2. Must simplify reaction behaviors, splitting them up ...
 - by state and between states (transitions).
 - within states.
- 3. Must react to past events
 - Can have complicated reaction rules to events in the past.

Overview

- RoadMap
- Motivation
 - Behavior, review
 - Interactions, review
 - State machines, requirements
- State Machines Solution
 - 1. Stimuli = end of transfers (events)
 - **2.** State and transition behaviors
 - 3. Matching past events to transitions

Summary

State Machine Solution (Part 1) (Reacting to stimuli)

- Reaction depends on current state.
 - Change states (leave current one, enter another).
 - Re-enter current state.
 - Do nothing.
- Events can arrive during or before states expecting them.
 - Addressed separately.

State Machine Solution (Part 1) (Reacting to stimuli)

- UML events = things "arriving" at objects
 - Signals, operation calls
 - Not events happening externally
 - Except unmodeled "changes" to anything.
- Treat as ends of transfers targeting objects.
 - Receiver doesn't specify sender.

UML Events = Ends of Transfers

State Machines (M2)

- Transitions are successions that ...
 - go out of steps …
 - that interactions (triggers) end during ...
 - that target the machine.

Overview

- RoadMap
- Motivation
 - Behavior, review
 - Interactions, review
 - State machines, requirements
- State Machines Solution
 - 1. Stimuli = end of transfers (events)
 - **2.** State and transition behaviors
 - 3. Matching past events to transitions
- Summary

State Machine Solution (Part 2) (Simplifying reaction behaviors)

- States have entry, do, and exit behaviors
 - Happen going into, being in, going out of states.
 - No other state behaviors, simplifies behavior modeling.
 - Only do behaviors can be stopped by events.
- Transitions have effect behaviors

Happen after source state exit and before target state entry.

- State occurrences:
 - Are behavior occurrences typing state properties... 38
 - with exactly three step properties ordered in time

Triggering Exit Behaviors

Exit behaviors happen after triggers end.

Aborting Do Behaviors

- Do behaviors stop before event arrives
 - Even if they aren't finished.
 - Assumes do behaviors are abortable.

Transition Behaviors

 Transitions can specify behaviors to happen in between states.

State Machine Problem (#2)

Competing Transitions (M1)

Competing Transitions (M1Lib/M2)

(M1)

- Library constraints inherited or reused
 - Acceptable/exit timing moved to library.
 For all
 - Transition constraints use M2.
 - Commonly used acceptance constraints. For models to use as needed

models

Overview

- RoadMap
- Motivation
 - Behavior, review
 - Interactions, review
 - State machines, requirements

State Machines Solution

- 1. Stimuli = end of transfers (events)
- **2.** State and transition behaviors
- **3.** Matching past events to transitions

Summary

State Machine Problem (Part 3) (Reacting to past events)

- So far, states are only triggered by events that arrive during the state.
- Want to enable states to be triggered by events that arrive before the state.

Past Events (M1)

Events arriving before state are acceptable.
 But can only be accepted once.

Past Events (M1 Library / M2)

 HappensDuring redefined to apply as indicated by boolean.

State Machine TBD

- Concurrent regions.
- Multiple machines and activities using the same events.
 - Objects with multiple behaviors.
- More complex event handling.
- Pulling from buffer, rather than matching (maybe).

Overview

- RoadMap
- Motivation
 - Behavior, review
 - Interactions, review
 - State machines, requirements
- State Machines Solution
 - 1. Stimuli = end of transfers (events)
 - **2.** State and transition behaviors
 - 3. Matching past events to transitions

Summary

Summary

- Unify reacting to events using
 - Transfer ends as events
 - Properties for state behaviors.
- Model of event processing
 - Matching events by constraints ...
 - ... easier for end user than event handling procedures.
- Speeds learning and analysis integration.

More Information

Intro to Behavior as Composite Structure

- <u>http://doc.omg.org/ad/2018-03-02</u>
- Interaction as Composite Structure
 - http://doc.omg.org/ad/18-06-11
- Object-orientation as Composite Structure
 - http://doc.omg.org/ad/18-09-07
- Earlier slides (more onto, includes interactions)
 - <u>http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf</u>
- Paper: <u>http://dx.doi.org/10.5381/jot.2011.10.1.a3</u>
- Application to BPMN:<u>http://conradbock.org/#BPDM</u>
- KerML: Contact Chas Galey <u>charles.e.galey@lmco.com</u>