engineering

]
[]
. i

Ioleloge|

State Machines as

Composite Structure:

(Onto)Logical State Machines
Part 1

Bjorn Cole
Georgia Institute of Technology

Conrad Bock,
U.S. National Institute of Standards and Technology

NIST

Motienal Institute of Standards and Technology

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines, requirements

= State Machines Solution
1. Stimuli = end of transfers (events)

2. State and transition behaviors
3. Matching past events to transitions

= Summary

Behavior as Composite Structure
Presentation Stack

Onto State Machines
(this one)

Onto OO
(ad/18-09-07)

Onto Interactions
(ad/18-06-11)

Onto Behavior Basics
(ad/2018-03-02)

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines, requirements

= State Machines Solution
1. Stimuli = end of transfers (events)
2. State and transition behaviors
3. Matching past events to transitions

= Summary

General Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.

General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pleces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.

Behaviors as Composite Structure

act PreventLockup [Activity Diagram])

Property

Property | ™~ __ _ __

\9 : o ke
— _TraiLusi — dl:Tractfj m1:Brake
Detectr Modulator
j
Connector - m

detTrkLos()

sd ABS_ActivafonSequence [Sequence Diagram])

Activity I<:|
P r O p e rty \ sendSignal()

modBrkFrc(traction_signal:boolean)g
stm TireTractic)\[State Diagram]|) >

modBrkFrc()

\1, (—LossOfTractionﬂl
sendAck()
Gripping] [Slipping] <

LRegainTraction—) Interaction
i/

Connector / State Machine Connector

-

Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or DeSired 3/15/09 10-11pmET :
Things Being ————

aKker|Icture
Modeled (MO) 3/15/09 10-12pmET :
Not instance Shoot
3/15/0911-12pmET :

specs.

= “Things” that occur in time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.

Behavior: What’'s in Common?

Standard .
Model Library § "appens Behavior happens
Before Occurrence During-t
o A
| 1
| I
| |
I happens
BN Focus
Things Being TakePicture 3/15/09 10-11pmET :
Modeled (MO) 3/15/09 10-12pmET : happe”SBefore\l,
> Shoot
happens| 3/15/0911-12pmET :

During-!

* They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled. °

Behavior: Use Library

Standard)
Model Librar happens Behavior happens
y Before Occurrence ¢IDuring™t
{subsets}
TakePicture
User Model
n : HappensBefore
(M1) stepl: Focus >{step2: Shoot
7
b AN /

| /

| |

! tepl

N — Focus
Things Being \ 3/15/09 10-11pmET :
TakePicture \
H Bef
Modeled (MO) 3/15/09 10-12pmET : AN - apReEls eore\l,
step
Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties.

Behavior: Too repetitive at M1?

- - t pe
l type Association él gwnedt
onnector
Metamodel % o owned e
perty
(M2) Class [@— | Property Connector
4 4 4 %edefines} 4
ownedStep fromStep
Behavior ; Step Succession
- toStep
A\ - A
g ’d I
] / "
I’ TakePicture
User Model , 7
M1 : HappensBefore//
(M1) stepl: Focus >|step2: Shoot
o7
A e
||
: I
: : \ stepl
Things Being v > 3/15/09F(1)ocijlS ET
-11pm .
Modeled (MO : \
(MO) TakePicture M HappensBefore\l/
3/15/09 10-12pmET : Nten2
step
> Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.

1

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines, requirements

= State Machines Solution
1. Stimuli = end of transfers (events)
2. State and transition behaviors
3. Matching past events to transitions

= Summary

12

Object _

Interactions

act PreventLockup [Activity Diagram])

:Modulate
BrakingForce

Problem

sd ABS_ActivationSequence)

d1:Traction
Detector

1

m1:Brake
Modulator

Flow
Activity
ibd [Block] Anti-Lock Contraller [Basic U
d1 : Traction
Detector
() A 4
/ m1 : Brake
Modulator
SysML Internal
Block Diagram
ltem Flow g

detTrkLos()
1
sendSignal()
modBrkFrc(traction_signal:boolean)g
>
modBrkFrc()
sendAck()
<€
| |
Interaction

Message

13

Interactions Requirements

1. Between things that outlive interactions.
— Objects have many interactions over time.
— Not just between steps in an activity.

2. Interactions are reusable and composable.

— The same kind of interaction might be used In
many user models and

— contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.

— Things being exchanged leave and arrive at
specified places in the interacting objects.

— Aka, output/inputs.

14

Standard
Model Library T

Model
(M1)

Transfers (M1)

Behavior
Occurrence

>

involves

ZP

*
{subsets}

Transfer

targetThin%'

sourceThin%.

transferredThing

Y

Any
Thing

>
*
{redefines}? [1]

ZF A A

I I

transferredThing I |

User Model < Product Transfer >| Product | 1 :
I

AN ’:‘ I I

1 1 } }

l transferredThing 1 : :

Things > Stove234: | |

Being Product Transfer sourceThing ' :

Modeled 3/15/09 10-12pmET : >| Store6s4: |

(I\/IO) targetThing '

> John’sHouse:

15

Interactions (M2)

owned
Class - Property
*
% {subsets?
) involves!
v\r
Behavior | yy Propertyv\\ erty
I * AN
I AN
% " {subsets} L \\
Metamodel jparticipant S
_ A I~ Property *] s |
(M2) Interaction ! < N
/typeofT ||ngTransferred T N
>| Claxs | N
“ * - AN \\\\
A I JK AN \\\\
! \ ' \ i
r I \ ' \ \
. \ \ \
Behavior \ ve), };
involve
Occurrence = ////5’]
27 Vi
Standard < é (Subsets /¢¢¢/I ////// /////
. _=A\ 7 74
Mode| L|brary targetThln%i—fﬁ:\ll/); 7 //
_—TATI 7
sourceThing T "y //’/
Transfer | | 1 == _______
Model I e >
transferredThin M1 property at tail of
(Ml) arrow is value of M2
- JAN {} [1.] property at head of
- .
transferredThing *Not instance links*
User Model < Product Transfer > Product 16
-

Transfers Along Connectors?

act PreventLockup [Activity Diagram])

Property

Property _ JiL _____ /

sd ABS_Activat%Sequence)

M TractLoss
/_ _TnaiLusi — dl:Traction m1l:Brake
Detector Modulator
Connector — g 1
detTrkLos()
Activity 1
Pro pel‘ty — ;ncl:l&gnal()
ibd [Block] .ﬂ-.n’[i-Ll:u:k\iﬁyrltrDIIEzr[Basic U modBrkFrc(traction_signal:boolean>)-
a1 : Tracti modBrkFrc()
= Iracuon
Detector
o sendAck()
m1 : Brake H / !
Modulator _
/1 / Interaction
Connector / SysML Internal Connector

Block Diagram

= Connectors are typed by associations._,
— But transfers are behaviors.

Interaction = Behavior & Associlation

= Associlations and behaviors both have
objects that participate in them.
— Associations link their participants.

— Behaviors involve their objects.
 Interactions have lifelines.
o Activities have object nodes, partitions, etc.
 Behaviors have parameters.

= [nteractions are behaviors that are also
associlations between their participants.

18

Links (M1) & Associations (M2)

owned
Propert
Class [® =
xﬂezt;amodel ,T\ ZF <{r Property
. participant
: Association |0 Property
A— A4
1 I
~ | I ________ |'|I- "',I:. — -I =======%
Standard) m,;’—”' M1 property at tail of
: : inkedThing 1| Link arrow is value of M2
Model Library Anything (non-ufue) A | oroperty at head of
5.7 — " the arrow. _
Model - 4 osersf T *Not instance links*
- Cam I
(Ml) con _I;I
_ -7 Camera i Controls
User Model = ~ <[iinkedc | Camera {redefines linkedTarget }
Controller camCon linkedCon’ Controller {redefines linkedSource}

N
!
Things Being Camera 34 : |gXe9CAM | | ink 251 ; | linkedCenf cntr| 12

Modeled (MO)

[
- T T T TN

v 4
_conCam']‘ ’ TM

19

Transfers as Links v

linkedThing
{non-unique}
Link
d ecte [2.%]
Standard) Behavior injrolves
Model Library Occurrence | A . *

[F Any
targetThin% Thing
sourceThin

Model Transfer %
(Ml) transferredThing
[F [1..7] ZF A A
{redefines)| | I
transferredThing | |
User Model < Product Transfer > Product | 11
| |
A '?‘ I I
1 1 } }
| transferredThing 1 : :
Things >| Stove234: : |
Being Product Transfer sourceThing s
. |
Modeled 3/15/09 10-12pmET : >| Store654: | |
(MO) targetThing !
> John'sHouse:

20

Interaction Participants (M2)

.. participant
Association |@ A /\Property typeOfThingT
{redefines}
. ! involves should be on
Behavior |@— | — T
1 Roperty
5 ,,,
i participant AR M1 ty at tail
Metamodel R IIII [3) o\ \\\ of aFr)rrc())vF\)/eirs)\//:Iuslof
(MZ) Interaction . roperty| ST) « | M2 property at head
typel:,nfThmgTransferred NS \| of the arrow.
\\l\ CI‘A\Q\S I_*Not instance links*
¢ \\\ \\\\ ‘\\\\
~ I \\\\ \\\\\ \\\\
I linkedThing . Y
Link [> % !
I . {subsets} [2] //I"l \|\|
Standard || Behavior frolves A
. /A
Model Library < [Occurrence |AA A i
: 4 subsets ¢;ﬁ‘1y/// VA
L targetThingﬁ/”/T/M’/g Y
/4’¢¢/ ///
sourceThing ===~ 2
Model Transfer > 7
transferredThingb==""
(M1) ferredThing -~
- [1.4]
- {redefines}
transferredThing 21
User Model = Product Transfer >| Product
-

Connectors Reusing Interactions

owned
Propert
e lrp 2 Property Class
{subsets}
Metamodel coponed I type 2
Class (@ A C t > iati
(M2) LIL =1 Connector Association
{subsets} 4 %edefines}
owned 4
Flow type)
<P - Flow —>| Interaction
A At
I \
User Model DeliverProduct : ‘l
I
) t : ProductT f
(M1) pickupFrom : s m/\uc =5 deliverTo :
I
A I
i |
' pick!pFrom
“ S| Store654:
Things Being Product Delivery del're
— ' . .
Modeled (MO) 3/15/09 9-1pmET - N > John’sHouse: Stove234:

\

V2

Product Transfer
3/15/09 10-12pmET :

TtransferredThinq

22

type

Flow Steps

< <— type —
Class POW”ed Property |role | Connector —>]Association
roperty A
<> lll " Lll A
{redefines} I
I\:/Ieztamodel 4 o 0Wnedstep fromStep 4 :
(M2) Behavior < * Succession I
|
5" o -
redefines , I
Interaction té% - Flow I “ I
A "™ A ! . !
I | L ! :
.] 1
CapturePicture b :l | happens
_——— — — — I Y A I Before\L
. ' i I /) I)
Ufcntl : Flight dConfirmation | L 4qp - miight | | Behavior
Control | - ’: Database | | | Occurrence
Model == - === |1
: Happens
(M1) P - Before ,I 4
| SC. y
Command p» :- _SFiaEefrilft_ ! T Picture B _ ’ Transfer
————" \)
: HappensBefore ¥
Standard
User Model Model Library

Flows & Out/Inputs (OF)

typeOfThing

M1 property at tail of
arrow is value of M2
property at head of
the arrow.

Not instance links

Connector Flowing
[1..*] {ordered, Class
Flow 4_ non-unique}
ltem _;inurceOutputPropert
! 1..*] {ordered,
Metamodel Flow b | property
(M2) i tagetinputPropert
|_i_tgrgetinputProperty
o [1..*] {ordered
[\))
[\ non-unique}
] \
] \
/7 A
Model Takel/icture\: Activity
Il \
M1 / \\\\
() stepl: Focus I/ N = step2 : Shoot
out xrsl : Exposure/i Exposure %“Tin xfs: Exposure
N
1
TakePicture 3/15/09 10-12pmET :
Instances ist_eu st_erﬁi
(MO) Focus Occ 1: -ExposureTransfer | ghpot Ocg 1 :
out xrsl = Exp123 e in xfs = Exp123

24

Flows & Out/Inputs (FP)

typeOfThing
Transferred

[1..*] {ordered,
non-unique}

Metamodel ltem sourceOutputPropert
(M2) Flow A [1..¥] {ordered,

\ non-unique}

V' [1..%] {ordered,
[non-unique}

Class

Property

M1 property at tail of
arrow is value of M2
property at head of
the arrow.

Not instance links

Il
————————— -

fdb : Flight Database

Ifcntl : Flight Control I// Confi‘rmati

Model |

in confRec: Confirmation?
(M1) |

x

I > ' sc:
Command : Spacecraft |

ﬁ'out confSend : Confirmationi

Picture

25

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines, requirements
= State Machines Solution
1. Stimuli = end of transfers (events)
2. State and transition behaviors
3. Matching past events to transitions

= Summary

26

States of What?

= Objects, based on properties
— Person in married state = has a spouse.

= Behaviors, based on past behavior

—Vending machine in dispensing state after
receiving selection and money states.

) = UML states are mostly behaviors ...

— ... tied to objects.
— Weakly include object state invariants.

= Both kinds can be in “machines” that
react to external stimuli.

27

State Machine Problem

= UML has two ways things can react to
external stimuli:
— State Machines have transitions.
— Activities have accept event actions.
* Very little integration or reuse.
— Two underlying metamodels/profiles.
— Two representations of reactions.
— Slightly different temporal semantics.

= Doubles the effort of learning UML and
building analysis tools for them.

28

State Machine Problem

sm TakePicture)

Cmd

A

Transition — \\ s
Trigger tate

act TakePicture)

Expose

4

Accept J \Call Behavior

Event Action Action

State Machine Requirements

1. Must selectively react to stimuli (“events”).
— Based on kind of stimulus and ...
— ... current & previous stimuli/reactions (“states”)
2. Must simplify reaction behaviors, splitting
them up ...
— by state and between states (transitions).
— Wwithin states.

3. Must react to past events

— Can have complicated reaction rules to events
In the past. 30

Overview

State Machines Solution

1. Stimuli = end of transfers (events)
2.

3.

31

State Machine Solution (Part 1)

(Reacting to stimuli)

= Reaction depends on current state.

— Change states (leave current one, enter
another).

— Re-enter current state.
— Do nothing.

= Events can arrive during or before
states expecting them.

— Addressed separately.

32

State Machine Solution (Part 1)

(Reacting to stimuli)

= UML events =things “arriving” at objects
— Signals, operation calls

— Not events happening externally
 Except unmodeled “changes” to anything.

= Treat as ends of transfers targeting
objects.

— Recelver doesn’t specify sender.

33

UML Events = Ends of Transfers

" happens
Before L, ADI AnyThing
Standard 4 happens Behavior sourcelr Ttarget Ttransferred
Model Library Duringt—>{ Occurrence
foubsets) <}—1 Transfer IQ
end —>
Model - ZF
M1 r .
(M1) TakePicture Expose
CmdXfer
2 —>] stepl: Focus . HappensBefore > step2: Shoot
= transferred
User Model < o
= I ExposeCmd
o I ster ExposeCmdXfer 0-1! target
=3 P ———— > self
T end : |
.
) A
; stepl
PN Focus
3/15/0910-11pmET:
. . stepX
Things Being _ S| ExpCmdXfer #7453 j\
Modeled (MO) TakePicture & end = 3/15/09 10:45pmET , :HappensBefore
3/15/09 10-12pmET : target I :HappensDuring
tep2
P — > Shoot 34
3/15/0911-12pmET :

State Machines (M2)

<type fromStep
Metamodel |Behavior owsrlgd Step el | SUCCESSION Step || Interaction
(M2) 7 - A Ape A
{subsets}? frcnState : |
. owned < State trigger |
State Machine OW State Transition éL Flow
Flow I
A A toState A I
: : : . :
! | ! . !
: TakePicture : R Expose
I | /7 CmdXfer
2 —>{ step1: Focus |-22pRensBetore) 51 gi0n2 whoot \l/
Model 5 - - transferred
' d
(M1) % ——————————————— - ExposeCmd
o I stepX : ExposeCmdXfer 011 target
ks et e self
g e e e e e e e e e e e — =
= Transitions are successions that ...
— go out of steps ...
— that interactions (triggers) end during ... -

— that target the machine.

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines, requirements

= State Machines Solution
1. Stimuli = end of transfers (events)

2. State and transition behaviors
3. Matching past events to transitions

= Summary

36

State Machine Solution (Part 2)

(Simplifying reaction behaviors)

= States have entry, do, and exit behaviors
— Happen going into, being in, going out of
states.

— No other state behaviors, simplifies
behavior modeling.

— Only do behaviors can be stopped by
events.

= Transitions have effect behaviors

— Happen after source state exit and before
target state entry.

37

State Behaviors (M1)

-

happens Behavior happens
Before L) Occurrence &—During

1 ; —8 E i{subsets}
c (]
(D)
Standard |
Model Librar
y StateOccurrence
- H Bef : HappensBefore .
Model entry appensBefore S| do PP S| exit
(M1)

-
4 entry

. tatel } redefines entr
User Model { TakePicture |[@——— Focusing [@ { 1 Focus

A
A\ 0 .
] I I
Occurrences TakePicture statel Focusin entry F
& d <> OCUS
(MO) 3/15/09 10-12pmET : 3/15/09 10-12pmET : 3/15/09 10-11pmET :

= State occurrences:

— Are behavior occurrences typing state properties...
— with exactly three step properties ordered in time

Triggering Exit Behaviors

Sta_ndard StateOccurrence
Model Library
Model
(M1) r .
TakePicture
—>Jstatel : Focusing |—-HappensBefore o, .05 - shooting
exit : LockFocus
User<
Model > ol _ L ____
| 2| 1stepX: ExposeCmdXfer 011 target
a n| === mm———— == self
: Happens | _e ____________ l
-

Ystatel exit

: {redefi it}
Focusing |‘ ———— LockFocus

= EXIt behaviors happen after triggers end.

39

Aborting Do Behaviors

Sta_ndard StateOccurrence
Model Library
Model
(M1) r :
TakePicture
—>Jstatel : Focusing |—-HappensBefore oo - shooting
do : Focus
User - }
Model > ol _ ___
—_ o
= <| 1 stepX: ExposeCmdXfer O0- l| target
E o '-_dE-___p _______ > self
: Happens | _en_ —— e e e ———— |

. {redefines do}
Focusing |0 Focus

= Do behaviors stop before event arrives
— Even if they aren’t finished.
— Assumes do behaviors are abortable.

Transition Behaviors

<type fromStep
Metamodel |Behavior : owned| Step : Succession Interaction
(M2) 4 Step 4 toStep 4 7,
‘? g & nState Stan effect I
. owne ate [
State Machine [@—-—=-1 State —— Transition Step |
A A A |
I ' ' |
: TakePicture : Expose
1 | CmdXfer
—>{ step1 : Focus | - TaPPeNsBelore 151 giep2 : Shoot
Model exit : transferred
M1 ——1 1
() : HappensBefore StepE : Prep : HappensBefore ExposeCmd
= e
c
E <| 1 stepX: ExposeCmdXfer ©- 1, target
A o] F==——— == —— === self
end : |
: Happens e e e e - - J
= Transitions can specify behaviors to
41

happen in between states.

State Machine Problem (#2)

sm TakePicture)

d

WB&EXxpose
. Cmd Set
Compe_tmg_/ WhitePoint
Transitions
act TakePicture) __________ .
’ \
|
, Expose| !
| |
1 I
'\ WB&Expose | ! Set
I Cmd I WhitePoint
DX A1
Interruptible —— <<_ Interrupting ——=;

Region Edge

Compet]

ng Transitions (M1)

acceptable

Standard fubsecs
: StateOccurrence Transfer
Model Library accepted
A 0.1
{ Accepted interaction ends { Must have value (link) & { Must have value (link) &
before the other acceptable iff statel.accepted has a iff statel.accepted has a
interactions do. } value & = steplT1. } value & = steplT2.}
)\ Y 4 L4
Model \ / /
. 4
(M1) Y TakePicture ,”
\ / ,~
\ . A /0.1
— state‘\lz Focusing : Happe}ﬁefo; >| state2 : Shooting
—exit: \
= g \OI ,/ l]\: HappensBefore
=l 2 accepted : /
User Al o end / state3 : Setting
' table : . .
Model) : Happens I_accep 28 : HappensBefore Oi WhitePoint
tar et\l/ subsets
g A
self I step1T1: ExposeCmdXfer ©- 1y |

45

Competing Transitions (M1Lib/M2)

fromState :
: owned < State trigger
State Machine [@—=——1 State o Flow
State Transition
toState v Flow
Metamodel Constraint N .
onstraint | eventAccept
(MZ) yy Condition \\ \\\
I \ \
~ I acceptable \
{ Accepted interaction ends {subsets}
before the other acceptable State ted Transfer
interactions do. } Occurrence accepte 1 \
< 0..1 : \
Standard —> _ = {{ Link must beythe value of a ‘P
tandar I —p exit : _ - state transition going out of the
Model <l 5 accepted - happens state property have self as value
Library 5| © pted: Before 0..1 where the transition’s trigger flow
~ o endl acceptable : {redefine”s} has a value and = self.accepted. }
Model : Happens
(M1)

= Library constraints inherited or reused

— Acceptable/exit timing moved to library. | gor all
— Transition constraints use M2. models

— Commonly used acceptance constraints. For mddels to
use as needed

Overview

State Machines Solution

1.

2.

3. Matching past events to transitions

45

State Machine Problem (Part 3)

(Reacting to past events)

= So far, states are only triggered by
events that arrive during the state.

= Want to enable states to be triggered by
events that arrive before the state.

46

Past Events (M1)

acceptable

{subsets}
Standard StateOccurrence ;I Transfer

Model Library accepte
Model A 0..1 0.1
(M1) - .
TakePicture
. : HappensBefore 0.1 .
statel : Focusing >| state2 : Shooting
—beXit :
e e l]\: HappensBefore
U % accepted :
ser) .end . state3d : Setting
table : : ,
Model) : Happens I_accep i : HappensBefore Oi WhitePoint
subsets
target\l/ 1
self \—: step1T1: ExposeCmdXfer ©- 1y
I"step1T2 : WB&ExposeCmdXfer 011

= Events arriving before state are acceptable
— But can only be accepted once.

Past Events (M1 Library / M2)

{ Must be typed by M1 State

YPe L State
Behavior owned| Step Occurrence or a specialization. }
>——
Step /
5 5
y4
Metamodel . owned _|{ Mo state occurrence must
(M2) State Machine State State - |have the same value of
pastEventsOK : Boolean pastEventsOK as self. }
- acceptable
{ Holds exactly when
pastEventsOK = false } Oc C?Jtr?teence o Transfer
Standard \ —> accepted
\ pastEventsOK : Boolean
Model < s 0.1
_ Vgl J—pexit:
Library gzl 5 .
Zof| « accepted :
S @ fqﬁ end bl
~ ' acceptable :
Model . : Happens | i
(M1)

= HappensDuring redefined to apply as
Indicated by boolean.

48

State Machine TBD

Concurrent regions.

Multiple machines and activities
using the same events.

— Objects with multiple behaviors.
More complex event handling.

Pulling from buffer, rather than
matching (maybe).

49

Overview

= RoadMap

= Motivation
— Behavior, review
— Interactions, review
— State machines, requirements

= State Machines Solution
1. Stimuli = end of transfers (events)

2. State and transition behaviors
3. Matching past events to transitions

= Summary

50

Summary

= Unify reacting to events using
— Transfer ends as events
— Properties for state behaviors.

= Model of event processing
— Matching events by constraints ...

— ... easler for end user than event handling
procedures.

= Speeds learning and analysis integration.

51

More Information

Intro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

Interaction as Composite Structure
— http://doc.omg.org/ad/18-06-11

Object-orientation as Composite Structure
— http://doc.omg.org/ad/18-09-07

Earlier slides (more onto, includes interactions)

— http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

Paper: http://dx.doi.org/10.5381/j0t.2011.10.1.a3
Application to BPMN:http://conradbock.org/#BPDM
KerML: Contact Chas Galey charles.e.qaley@Imco.com

52

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
mailto:charles.e.galey@lmco.com

	State Machines as�Composite Structure:�(Onto)Logical State Machines�Part 1
	Overview
	Behavior as Composite Structure Presentation Stack

	Motivation, behavior, review
	General Problem
	General Solution
	Behaviors as Composite Structure
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Motivation, interactions, review
	Interactions Problem
	Interactions Requirements
	Transfers (M1)
	Interactions (M2)
	Transfers Along Connectors?
	Interaction = Behavior & Association
	Links (M1) & Associations (M2)
	Transfers as Links (M1)
	Interaction Participants (M2)
	Connectors Reusing Interactions
	Flow Steps
	Flows & Out/Inputs (OF)
	Flows & Out/Inputs (FP)

	State machines, requirements
	States of What?
	State Machine Problem
	State Machine Problem
	State Machine Requirements

	State machines, solution (part 1, stimuli)
	State Machine Solution (Part 1)�(Reacting to stimuli)
	State Machine Solution (Part 1)�(Reacting to stimuli)
	UML Events = Ends of Transfers
	State Machines (M2)

	State machines, solution (part 2, state/transition behavior)
	State Machine Solution (Part 2)�(Simplifying reaction behaviors)
	State Behaviors (M1)
	Triggering Exit Behaviors
	Aborting Do Behaviors
	Transition Behaviors
	State Machine Problem (#2)
	Competing Transitions (M1)
	Competing Transitions (M1Lib/M2)

	State machines, solution (part 3, past events)
	State Machine Problem (Part 3)�(Reacting to past events)
	Past Events (M1)
	Past Events (M1 Library / M2)

	State Machine TBD
	Summary
	More Information

