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General Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.



General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pleces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.



Behaviors as Composite Structure
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\9 : o ke
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Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or DeSired 3/15/09 10-11pmET :
Things Being ————

aKker|Icture
Modeled (MO) 3/15/09 10-12pmET :
Not instance Shoot
3/15/0911-12pmET :

specs.

= “Things” that occur in time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.



Behavior: What’'s in Common?

Standard .
Model Library § "appens Behavior happens
Before Occurrence During-t
o A
| 1
| I
| |
I happens
BN Focus
Things Being TakePicture 3/15/09 10-11pmET :
Modeled (MO) 3/15/09 10-12pmET : happe”SBefore\l,
> Shoot
happens| 3/15/0911-12pmET :

During-!

* They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled. °



Behavior: Use Library

Standard )
Model Librar happens Behavior happens
y Before Occurrence ¢IDuring™t
{subsets}
TakePicture
User Model
n : HappensBefore
(M1) stepl: Focus >{step2: Shoot
7
b AN /

| /

| |

! tepl

N — Focus
Things Being \ 3/15/09 10-11pmET :
TakePicture \
H Bef
Modeled (MO) 3/15/09 10-12pmET : AN - apReEls eore\l,
step
Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties.



Behavior: Too repetitive at M1?

- - t pe
l type Association él gwnedt
onnector
Metamodel % o owned e
perty
(M2) Class [@— | Property Connector
4 4 4 %edefines} 4
ownedStep fromStep
Behavior ; Step Succession
- toStep
A\ - A
g ’d I
] / "
I’ TakePicture
User Model , 7
M1 : HappensBefore//
(M1) stepl: Focus >|step2: Shoot
o7
A e
||
: I
: : \ stepl
Things Being v > 3/15/09F(1)ocijlS ET
-11pm .
Modeled (MO : \
(MO) TakePicture M HappensBefore\l/
3/15/09 10-12pmET : Nten2
step
> Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.
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Object _

Interactions

act PreventLockup [Activity Diagram] )

:Modulate
BrakingForce

Problem

sd ABS_ActivationSequence )

d1:Traction
Detector

1

m1:Brake
Modulator

Flow
Activity
ibd [Block] Anti-Lock Contraller [ Basic U
d1 : Traction
Detector
() A 4
/ m1 : Brake
Modulator
SysML Internal
Block Diagram
ltem Flow g

detTrkLos()
1
sendSignal()
modBrkFrc(traction_signal:boolean)g
>
modBrkFrc()
sendAck()
<€
| |
Interaction

Message

13




Interactions Requirements

1. Between things that outlive interactions.
— Objects have many interactions over time.
— Not just between steps in an activity.

2. Interactions are reusable and composable.

— The same kind of interaction might be used In
many user models and

— contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.

— Things being exchanged leave and arrive at
specified places in the interacting objects.

— Aka, output/inputs.

14



Standard
Model Library T

Model
(M1)

Transfers (M1)

Behavior
Occurrence

>

involves

ZP

*
{subsets}

Transfer

targetThin%'

sourceThin%.

transferredThing

Y

Any
Thing

>
*
{redefines}? [1 ]

ZF A A

I I

transferredThing I |

User Model < Product Transfer >| Product | 1 :
I

AN ’:‘ I I

1 1 } }

l transferredThing 1 : :

Things > Stove234: | |

Being Product Transfer sourceThing ' :

Modeled 3/15/09 10-12pmET : >| Store6s4: |

(I\/IO) targetThing '

> John’sHouse:
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Interactions (M2)

owned
Class - Property
*
% {subsets?
) involves!
v\r
Behavior | yy Propertyv\\ erty
I * AN
I AN
% " {subsets} L \\
Metamodel jparticipant S
_ A I~ Property *] s |
(M2) Interaction ! < N
/typeofT ||ngTransferred T N
>| Claxs | N
“ * - AN \\\\
A I JK AN \\\\
! \ ' \ i
r I \ ' \ \
. \ \ \
Behavior \ ve ), };
involve
Occurrence = ////5’ ]
27 Vi
Standard < é (Subsets /¢¢¢/I ////// /////
. _=A\ 7 74
Mode| L|brary targetThln%i—fﬁ:\ll/); 7 //
_—TATI 7
sourceThing T "y //’/
Transfer | | 1 == _______
Model I e >
transferredThin M1 property at tail of
(Ml) arrow is value of M2
- JAN {} [1.] property at head of
- .
transferredThing *Not instance links*
User Model < Product Transfer > Product 16
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Transfers Along Connectors?

act PreventLockup [Activity Diagram] )

Property

Property _ JiL _____ /

sd ABS_Activat%Sequence )

M TractLoss
/_ _TnaiLusi — dl:Traction m1l:Brake
Detector Modulator
Connector — g 1
detTrkLos()
Activity 1
Pro pel‘ty — ;ncl:l&gnal()
ibd [Block] .ﬂ-.n’[i-Ll:u:k\iﬁyrltrDIIEzr[ Basic U modBrkFrc(traction_signal:boolean>)-
a1 : Tracti modBrkFrc()
= Iracuon
Detector
o sendAck()
m1 : Brake H / !
Modulator _
/1 / Interaction
Connector / SysML Internal Connector

Block Diagram

= Connectors are typed by associations._,
— But transfers are behaviors.



Interaction = Behavior & Associlation

= Associlations and behaviors both have
objects that participate in them.
— Associations link their participants.

— Behaviors involve their objects.
 Interactions have lifelines.
o Activities have object nodes, partitions, etc.
 Behaviors have parameters.

= [nteractions are behaviors that are also
associlations between their participants.
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Links (M1) & Associations (M2)

owned
Propert
Class [® =
xﬂezt;amodel ,T\ ZF <{r Property
. participant
: Association |0 Property
A— A4
1 I
~ | I ________ |'|I- "',I:. — -I =======%
Standard ) m,;’—”' M1 property at tail of
: : inkedThing 1| Link arrow is value of M2
Model Library Anything (non-ufue) A | oroperty at head of
5.7 — " the arrow. _
Model - 4 osersf T *Not instance links*
- Cam I
(Ml) con _I;I
_ -7 Camera i Controls
User Model = ~ <[iinkedc | Camera {redefines linkedTarget }
Controller camCon linkedCon’ Controller {redefines linkedSource}

N
!
Things Being Camera 34 : |gXe9CAM | | ink 251 ; | linkedCenf cntr| 12

Modeled (MO)

[
- T T T TN

v 4
_conCam']‘ ’ TM
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Transfers as Links v

linkedThing
{non-unique}
Link
d ecte [2.%]
Standard ) Behavior injrolves
Model Library Occurrence | A . *

[F Any
targetThin% Thing
sourceThin

Model Transfer %
(Ml) transferredThing
[F [1..7] ZF A A
{redefines)| | I
transferredThing | |
User Model < Product Transfer > Product | 11
| |
A '?‘ I I
1 1 } }
| transferredThing 1 : :
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(MO) targetThing !
> John'sHouse:
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Interaction Participants (M2)

.. participant
Association |@ A /\Property typeOfThingT
{redefines}
. ! involves should be on
Behavior |@— | — T
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5 ,,,
i participant AR M1 ty at tail
Metamodel R IIII [3) o\ \\\ of aFr)rrc())vF\)/eirs )\//:Iuslof
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Connectors Reusing Interactions

owned
Propert
e lrp 2 Property Class
{subsets}
Metamodel coponed I type 2
Class (@ A C t > iati
(M2) LIL =1 Connector Association
{subsets} 4 %edefines}
owned 4
Flow type )
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A At
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type

Flow Steps

< <— type —
Class POW”ed Property |role | Connector —>]Association
roperty A
<> lll " Lll A
{redefines} I
I\:/Ieztamodel 4 o 0Wnedstep fromStep 4 :
(M2) Behavior < * Succession I
|
5" o -
redefines , I
Interaction té% - Flow I “ I
A "™ A ! . !
I | L ! :
. ] 1
CapturePicture b :l | happens
_——— — — — I Y A I Before\L
. ' i I / ) I )
Ufcntl : Flight dConfirmation | L 4qp - miight | | Behavior
Control | - ’: Database | | | Occurrence
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Flows & Out/Inputs (OF)

typeOfThing

M1 property at tail of
arrow is value of M2
property at head of
the arrow.

*Not instance links*

Connector Flowing
[1..*] {ordered, Class
Flow 4_ non-unique}
ltem _;inurceOutputPropert
! 1..*] {ordered,
Metamodel Flow b | property
(M2) i tagetinputPropert
|_i_tgrgetinputProperty
o [1..*] {ordered
[ \ ) )
[ \ non-unique}
] \
] \
/7 A
Model Takel/icture\: Activity
Il \
M1 / \\\\
( ) stepl: Focus I/ N = step2 : Shoot
out xrsl : Exposure/i Exposure %“Tin xfs: Exposure
N
1
TakePicture 3/15/09 10-12pmET :
Instances ist_eu st_erﬁi
(MO) Focus Occ 1: -ExposureTransfer | ghpot Ocg 1 :
out xrsl = Exp123 e in xfs = Exp123
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Flows & Out/Inputs (FP)

typeOfThing
Transferred

[1..*] {ordered,
non-unique}

Metamodel ltem sourceOutputPropert
(M2) Flow A [1..¥] {ordered,

\ non-unique}

V' [1..%] {ordered,
[ non-unique}

Class

Property

M1 property at tail of
arrow is value of M2
property at head of
the arrow.

*Not instance links*

Il
————————— -

fdb : Flight Database

Ifcntl : Flight Control I// Confi‘rmati

Model |

in confRec: Confirmation?
(M1) |

x

I > ' sc:
Command : Spacecraft |

ﬁ'out confSend : Confirmationi

Picture
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States of What?

= Objects, based on properties
— Person in married state = has a spouse.

= Behaviors, based on past behavior

—Vending machine in dispensing state after
receiving selection and money states.

) = UML states are mostly behaviors ...

— ... tied to objects.
— Weakly include object state invariants.

= Both kinds can be in “machines” that
react to external stimuli.
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State Machine Problem

= UML has two ways things can react to
external stimuli:
— State Machines have transitions.
— Activities have accept event actions.
* Very little integration or reuse.
— Two underlying metamodels/profiles.
— Two representations of reactions.
— Slightly different temporal semantics.

= Doubles the effort of learning UML and
building analysis tools for them.

28



State Machine Problem

sm TakePicture)

Cmd

A

Transition — \\ s
Trigger tate

act TakePicture )

Expose

4

Accept J \Call Behavior

Event Action Action



State Machine Requirements

1. Must selectively react to stimuli (“events”).
— Based on kind of stimulus and ...
— ... current & previous stimuli/reactions (“states”)
2. Must simplify reaction behaviors, splitting
them up ...
— by state and between states (transitions).
— Wwithin states.

3. Must react to past events

— Can have complicated reaction rules to events
In the past. 30



Overview

State Machines Solution

1. Stimuli = end of transfers (events)
2.

3.
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State Machine Solution (Part 1)

(Reacting to stimuli)

= Reaction depends on current state.

— Change states (leave current one, enter
another).

— Re-enter current state.
— Do nothing.

= Events can arrive during or before
states expecting them.

— Addressed separately.

32



State Machine Solution (Part 1)

(Reacting to stimuli)

= UML events =things “arriving” at objects
— Signals, operation calls

— Not events happening externally
 Except unmodeled “changes” to anything.

= Treat as ends of transfers targeting
objects.

— Recelver doesn’t specify sender.

33



UML Events = Ends of Transfers

" happens
Before L, ADI AnyThing
Standard 4 happens Behavior sourcelr Ttarget Ttransferred
Model Library Duringt—>{ Occurrence
foubsets) <}—1 Transfer IQ
end —>
Model - ZF
M1 r .
(M1) TakePicture Expose
CmdXfer
2 —>] stepl: Focus . HappensBefore > step2: Shoot
= transferred
User Model < o
= I ExposeCmd
o I ster ExposeCmdXfer 0-1! target
=3 P ———— > self
T end : |
.
) A
; stepl
PN Focus
3/15/0910-11pmET:
. . stepX
Things Being _ S| ExpCmdXfer #7453 j\
Modeled (MO) TakePicture & end = 3/15/09 10:45pmET , :HappensBefore
3/15/09 10-12pmET : target I :HappensDuring
tep2
P — > Shoot 34
3/15/0911-12pmET :




State Machines (M2)

<type fromStep
Metamodel |Behavior owsrlgd Step el | SUCCESSION Step || Interaction
(M2) 7 - A Ape A
{subsets}? frcnState : |
. owned < State trigger |
State Machine OW State Transition éL Flow
Flow I
A A toState A I
: : : . :
! | ! . !
: TakePicture : R Expose
I | /7 CmdXfer
2 —>{ step1: Focus |-22pRensBetore ) 51 gi0n2 whoot \l/
Model 5 - - transferred
' d
(M1) % ——————————————— - ExposeCmd
o I stepX : ExposeCmdXfer 011 target
ks et e self
g e e e e e e e e e e e — =
= Transitions are successions that ...
— go out of steps ...
— that interactions (triggers) end during ... -

— that target the machine.
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State Machine Solution (Part 2)

(Simplifying reaction behaviors)

= States have entry, do, and exit behaviors
— Happen going into, being in, going out of
states.

— No other state behaviors, simplifies
behavior modeling.

— Only do behaviors can be stopped by
events.

= Transitions have effect behaviors

— Happen after source state exit and before
target state entry.
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State Behaviors (M1)

-

happens Behavior happens
Before L) Occurrence &—During

1 ; —8 E i{subsets}
c (]
(D)
Standard |
Model Librar
y StateOccurrence
- H Bef : HappensBefore .
Model entry appensBefore S| do PP S| exit
(M1)

-
4 entry

. tatel } redefines entr
User Model { TakePicture |[@——— Focusing [@ { 1 Focus

A
A\ 0 .
] I I
Occurrences TakePicture statel Focusin entry F
& d <> OCUS
(MO) 3/15/09 10-12pmET : 3/15/09 10-12pmET : 3/15/09 10-11pmET :

= State occurrences:

— Are behavior occurrences typing state properties...
— with exactly three step properties ordered in time



Triggering Exit Behaviors

Sta_ndard StateOccurrence
Model Library
Model
(M1) r .
TakePicture
—>Jstatel : Focusing |—-HappensBefore o, .05 - shooting
exit : LockFocus
User<
Model > ol _ L ____
| 2| 1stepX: ExposeCmdXfer 011  target
a n| === mm———— == self
: Happens | _e ____________ l
-

Ystatel exit

: {redefi it}
Focusing |‘ ———— LockFocus

= EXIt behaviors happen after triggers end.
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Aborting Do Behaviors

Sta_ndard StateOccurrence
Model Library
Model
(M1) r :
TakePicture
—>Jstatel : Focusing |—-HappensBefore oo - shooting
do : Focus
User - }
Model > ol _ ___
—_ o
= <| 1 stepX: ExposeCmdXfer O0- l| target
E o '-_dE-___p _______ > self
: Happens | _en_ —— e e e ———— |

. {redefines do}
Focusing |0 Focus

= Do behaviors stop before event arrives
— Even if they aren’t finished.
— Assumes do behaviors are abortable.



Transition Behaviors

<type fromStep
Metamodel |Behavior : owned| Step : Succession Interaction
(M2) 4 Step 4 toStep 4 7,
‘? g & nState Stan effect I
. owne ate [
State Machine [@—-—=-1 State —— Transition Step |
A A A |
I ' ' |
: TakePicture : Expose
1 | CmdXfer
—>{ step1 : Focus | - TaPPeNsBelore 151 giep2 : Shoot
Model exit : transferred
M1 ——1 1
( ) : HappensBefore StepE : Prep : HappensBefore ExposeCmd
= e
c
E <| 1 stepX: ExposeCmdXfer ©- 1, target
A o] F==——— == —— === self
end : |
: Happens e e e e - - J
= Transitions can specify behaviors to
41
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State Machine Problem (#2)

sm TakePicture)

d

WB&EXxpose
. Cmd Set
Compe_tmg_/ WhitePoint
Transitions
act TakePicture ) __________ .
’ \
|
, Expose| !
| |
1 I
'\ WB&Expose | ! Set
I Cmd I WhitePoint
DX A1
Interruptible —— <<_ Interrupting ——=;

Region Edge



Compet]

ng Transitions (M1)

acceptable

Standard fubsecs
: StateOccurrence Transfer
Model Library accepted
A 0.1
{ Accepted interaction ends { Must have value (link) & { Must have value (link) &
before the other acceptable iff statel.accepted has a iff statel.accepted has a
interactions do. } value & = steplT1. } value & = steplT2.}
)\ Y 4 L4
Model \ / /
. 4
(M1) Y TakePicture ,”
\ / ,~
\ . A /0.1
— state‘\lz Focusing : Happe}ﬁefo; >| state2 : Shooting
—exit: \
= g \OI ,/ l]\: HappensBefore
=l 2 accepted : /
User Al o end / state3 : Setting
' table : . .
Model ) : Happens I_accep 28 : HappensBefore Oi WhitePoint
tar et\l/ subsets
g A
self I step1T1: ExposeCmdXfer ©- 1y |
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Competing Transitions (M1Lib/M2)

fromState :
: owned < State trigger
State Machine [@—=——1 State o Flow
State Transition
toState v Flow
Metamodel Constraint N .
onstraint | eventAccept
(MZ) yy Condition \\ \\\
I \ \
~ I acceptable \
{ Accepted interaction ends {subsets}
before the other acceptable State ted Transfer
interactions do. } Occurrence accepte 1 \
< 0..1 : \
Standard —> _ = {{ Link must beythe value of a ‘P
tandar I —p exit : _ - state transition going out of the
Model <l 5 accepted - happens state property have self as value
Library 5| © pted: Before 0..1 where the transition’s trigger flow
~ o endl acceptable : {redefine”s} has a value and = self.accepted. }
Model : Happens
(M1)

= Library constraints inherited or reused

— Acceptable/exit timing moved to library. | gor all
— Transition constraints use M2. models

— Commonly used acceptance constraints. For mddels to
use as needed



Overview

State Machines Solution

1.

2.

3. Matching past events to transitions
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State Machine Problem (Part 3)

(Reacting to past events)

= So far, states are only triggered by
events that arrive during the state.

= Want to enable states to be triggered by
events that arrive before the state.
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Past Events (M1)

acceptable

{subsets}
Standard StateOccurrence ;I Transfer

Model Library accepte
Model A 0..1 0.1
(M1) - .
TakePicture
. : HappensBefore 0.1 .
statel : Focusing >| state2 : Shooting
—beXit :
e e l]\: HappensBefore
U % accepted :
ser ) .end . state3d : Setting
table : : ,
Model ) : Happens I_accep i : HappensBefore Oi WhitePoint
subsets
target\l/ 1
self \—: step1T1: ExposeCmdXfer ©- 1y
I"step1T2 : WB&ExposeCmdXfer 011

= Events arriving before state are acceptable
— But can only be accepted once.



Past Events (M1 Library / M2)

{ Must be typed by M1 State

YPe L State
Behavior owned| Step Occurrence or a specialization. }
>——
Step /
5 5
y4
Metamodel . owned _|{ Mo state occurrence must
(M2) State Machine State State - |have the same value of
pastEventsOK : Boolean pastEventsOK as self. }
- acceptable
{ Holds exactly when
pastEventsOK = false } Oc C?Jtr?teence o Transfer
Standard \ —> accepted
\ pastEventsOK : Boolean
Model < s 0.1
_ Vgl J—pexit:
Library gzl 5 .
Zof| « accepted :
S @ fqﬁ end bl
~ ' acceptable :
Model . : Happens | i
(M1)

= HappensDuring redefined to apply as
Indicated by boolean.
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State Machine TBD

Concurrent regions.

Multiple machines and activities
using the same events.

— Objects with multiple behaviors.
More complex event handling.

Pulling from buffer, rather than
matching (maybe).
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Summary

= Unify reacting to events using
— Transfer ends as events
— Properties for state behaviors.

= Model of event processing
— Matching events by constraints ...

— ... easler for end user than event handling
procedures.

= Speeds learning and analysis integration.
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More Information

Intro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

Interaction as Composite Structure
— http://doc.omg.org/ad/18-06-11

Object-orientation as Composite Structure
— http://doc.omg.org/ad/18-09-07

Earlier slides (more onto, includes interactions)

— http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

Paper: http://dx.doi.org/10.5381/j0t.2011.10.1.a3
Application to BPMN:http://conradbock.org/#BPDM
KerML: Contact Chas Galey charles.e.qaley@Imco.com
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