
State Machines as
Composite Structure:
(Onto)Logical State Machines

Part 2

Bjorn Cole
Georgia Institute of Technology

Conrad Bock,
U.S. National Institute of Standards and Technology

2

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

Behavior as Composite Structure
Presentation Stack

3

Onto State Machines, Part 1
(ad/18-12-09)

Onto Behavior Basics
(ad/2018-03-02)

Onto Interactions
(ad/18-06-11)

Onto OO
(ad/18-09-07)

Onto State Machines, Part 2

4

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

Original Problem
 UML has three behavior diagrams.

– Activity, state, interaction.
 Very little integration or reuse between

them.
– Three underlying metamodels.
– Three representations of temporal order.

 Triples the effort of learning UML and
building analysis tools for it.

5

General Solution
 Treat behaviors as assemblies of

other behaviors.
– Like objects are assemblies of other

objects.
 Assembly = UML internal structure

– Pieces represented by properties.
– Put together by connectors.

 Put all behavior diagrams on the
same underlying behavior assembly
model.

6

stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction

Behaviors as Composite Structure

7

sd ABS_ActivationSequence [Sequence Diagram]

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

State Machine

Interaction

Property

Connector

Property

Connector

Property

Connector

8

Behavior as Timing Constraints

 Behaviors model “things” happening over time.
– With temporal relations (time constraints) between them.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Happens during

Happens before

9

Behavior as Timing Constraints

 The TakePicture occurrence on the right does
not follow the behavior model.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

10

Behavior as “Composite Timing”

 Composite structure relations are temporal:
– Part-whole = happens during.
– Part-part = happens before.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Part-whole

Part-part

Part-whole Part-part

Behavior as “Composite Timing”

11

class TakePicture

step1: Focus

step2 : Shoot

: HappensBefore

Focusing before shooting in same taking picture

Model
(M1)

Things
Being
Modeled
(M0)

:Happens
Before

:Happens
Before

step2 step2step1step1

TakingPic2:

Focusing
DuringTP2:

Shooting
DuringTP2:

Shooting
DuringTP1:

TakingPic1:

Focusing
DuringTP1:

HappensBefore

step1
Focus

step2
Shoot

Property
(whole-part)

Connector
(part-part)

Not instance specs

Model and Things Being Modeled

 Dashed arrows between M1 and M0
mean 12

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

M0 M1 Synonyms

Classified by
Modeled by
Specified by
Conforms to
Follows
Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sense)13

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Behavior: What’s Being Modeled?

 “Things” that occur in time
– Eg, taking a picture, focusing, etc.
– Not “behaviors”, “actions”, etc.

14

Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Real,
Simulated,
or Desired

Things Being
Modeled (M0)

Shoot
3/15/0911-12pmET :Not instance

specs.

Behavior: What’s in Common?

 They happen before or during each
other.
– Construct M1 library for this.
– Use it to classify things being modeled. 15

Things Being
Modeled (M0)

happens
During-1 Focus

3/15/09 10-11pmET :
TakePicture

3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

happensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

happens
During-1

Behavior: Use Library

 Specialize library classes and
subset/redefine library properties. 16

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

User Model
(M1)

step2

TakePicture

step1 : Focus step2 : Shoot
: HappensBefore

{subsets}

Behavior: Too repetitive at M1?

 Capture M1 patterns in M2 elements.
– Tools apply patterns automatically.

17

Property

type

owned
Property

Connector
role

type

fromStep

toStep

owned
Connector

Association

Class

Step
ownedStep

Behavior

{redefines}

Metamodel
(M2)

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

User Model
(M1)

step2

TakePicture

step2 : Shoot
: HappensBefore

Succession

step1 : Focus

Benefits: Original Problem
 Flexibility in using metamodels

– Add metaelements as needed to simplify
library usage.

 Many metaelements become synonyms
– Application / method / diagram-specific

terminology sharing same semantics.
– M2 actions, states, etc, => M1 happensDuring

 Learning UML and building analysis tools
for it is easier
– Due to shared semantics for variety of

modeling language terminology. 18

19

Benefits: Expressiveness

 Constraints are inherited in UML
– including temporal constraints.

Time

Focus

TakePicture

Shoot

TakeSpecialPicture

Log
Behavior

Take Picture

MultiFocus

ShootFocus ShootMulti
Focus Log

Model
(M1)

Things
Being
Modeled
(M0)

MultiFocusFocus

HappensDuring

HappensBefore

Benefits: Expressiveness

 Combine activity and state machines.
– States and actions happen during their

“containing” occurrences, ordered in time.20

TakePicture

ShootFocus
button
Press

: Exposure

Event

Object flow

: Exposure

Benefits: Modeled Semantics
 UML semantics is written in free text

– Specifying an execution procedure for
activities and state machines:

– and trace classification in interactions:

 Model in standard libraries. 21

Benefits: Classification Semantics
 Standard execution models for UML

– fUML, PSCS, PSSM
– Procedures that create a behavior occurrence

• Conforming to a UML model.
– Don’t tell whether

• An existing behavior occurrence conforms.
• Tools are producing correct occurrences

 Classification does is the opposite
– Tells whether an existing behavior occurrence

conforms to a model.
– Doesn’t say how to create an occurrence.
– Execution engines are constraint solvers. 22

28

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

Interactions Problem

29

sd ABS_ActivationSequence

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

SysML Internal
Block Diagram

Interaction

Object
Flow

Item Flow
Message

Interactions Requirements
1. Between things that outlive interactions.

– Objects have many interactions over time.
– Not just between steps in an activity.

2. Interactions are reusable and composable.
– The same kind of interaction might be used in

many user models and
– contain many other interactions ordered in time.

3. Interacting objects have “mailboxes”.
– Things being exchanged leave and arrive at

specified places in the interacting objects.
– Aka, output/inputs. 30

31

Interactions Solution (Part 1)
(between things that outlive interactions)

 Flows happen in time.
– They are behaviors.

 Start when an entity begins flowing.
– Leaves output pin of an action.

… execution on a lifeline.
… SysML out flow property.

 End when the entity stops flowing.
– Arrives at input pin of an action.

… execution on a lifeline.
… SysML in flow property.

Transfers (M1)

transferredThing

[1..*]

sourceThing

targetThing

Model
(M1)

transferredThing

Transfer

{redefines}

Standard
Model Library

Things
Being
Modeled
(M0)

transferredThing

sourceThing

targetThing

Product

Any
Thing

Store654:

John’sHouse:

Product Transfer

Product Transfer
3/15/09 10-12pmET :

User Model

Behavior
Occurrence

Stove234:

32

involves

*{subsets}

Interactions (M2)

transferredThing

[1..*]

sourceThing

targetThing

Model
(M1)

transferredThing

Transfer

{redefines}

Standard
Model Library

Product

Any
Thing

Product TransferUser Model 33

involves

*{subsets}

Metamodel
(M2)

Class
/typeofThingTransferred

*

Behavior

Class owned
Property

*

Property

participant
Property *

{subsets}

involves
Property

*

{subsets}

Behavior
Occurrence

M1 property at tail of
arrow is value of M2
property at head of
the arrow.
Not instance links

Interaction

ownedStep
*

owned
Property

*

34

Flow Steps

Metamodel
(M2)

Model
(M1)

Interaction

CapturePicture

Confirmation

Command Picture

: Happens
Before

: HappensBefore

fcntl : Flight
Control

fdb : Flight
Database

sc:
Spacecraft

Property role

fromStep

toStep

AssociationClass

Behavior

{redefines}

type
type

Connector

type

happens
Before

Standard
Model LibraryUser Model

Succession

Behavior
Occurrence

Step

Flow

Transfer

type
{redefines}

35

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

States of What?
 Objects, based on properties

– Person in married state = has a spouse.
 Behaviors, based on past behavior

– Vending machine in dispensing state after
receiving selection and money states.

– UML states are mostly of behaviors ...
• … tied to objects.
• Weakly include object state invariants.

 Both kinds can be in “machines” that
react to external stimuli.

36

States of Behaviors

 States of behaviors = steps in behaviors
– Properties typed by other behaviors.

 Part 1 assumed stimuli arrived directly
at behaviors. 37

ShootFocus

… in the
“state of shooting”

…in the
“state of focusing”

Behavior

sm TakePicture

State Machine Problem, Part 1

38

act TakePicture

ShootFocus Expose
Cmd

sm TakePicture

ShootFocus
ExposeCmd

Transition
Trigger

Accept
Event Action

State

Call Behavior
Action

State Machine Requirements, P1
1. Must selectively react to stimuli (“events”).

– Based on kind of stimulus and …
– … current & previous stimuli/reactions (“states”)

2. Must simplify reaction behaviors, splitting
them up …

– by state and between states (transitions).
– within states.

3. Must react to past events
– Can have complicated reaction rules to events

in the past. 39

40

State Machine Solution (Part 1.1)
(Reacting to stimuli)

 UML events = things “arriving” at objects
– Signals, operation calls
– Not events happening externally

• Except unmodeled “changes” to anything.

 Treat as ends of transfers targeting
objects.
– Receiver doesn’t specify sender.

UML Events = Ends of Transfers

41

Things Being
Modeled (M0)

step1
Focus

3/15/0910-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

:HappensBefore

Behavior
Occurrence

Standard
Model Library

User Model

step2

TakePicture

step1 : Focus step2 : Shoot: HappensBefore

stepX : ExposeCmdXfer 0..1

end :

: H
ap

pe
ns

D
ur

in
g

self
target

AnyThing
happens

During

end
Transfer

targetsource

ExpCmdXfer #7453 :

end = 3/15/09 10:45pmET

stepX

target

Expose
CmdXfer

Model
(M1)

transferred

ExposeCmd

transferred

:HappensDuring

{subsets}

happens
Before

stepX

State Machines (M2)

 Transitions are successions that …
– go out of steps …
– that identify interactions (triggers) …
– that end during and target the machine. 42

TakePicture

step2 : Shoot: HappensBefore

self
target

Expose
CmdXfer

Metamodel
(M2)

Behavior

State Machine

owned
Step

owned
State

type

fromState

toState

ExposeCmd

transferredModel
(M1)

trigger
: H

ap
pe

ns
D

ur
in

g step1 : Focus

fromStep

toStep
Succession

State
Transition

Step Interaction
type

Flow

stepX : ExposeCmdXfer 0..1

end :

Step

State

{redef}

{redef}
{subsets}

M1 property at tail of
arrow is value of M2
property at head of
the arrow.
Not instance links

stepX

43

State Behaviors (M1)

 State occurrences:
– Are behavior occurrences typing state properties...
– with exactly three step properties ordered in time

Model
(M1)

happens
During

Occurrences
(M0)

happens
Before

Focusing
entry

{redefines entry} Focusstate1TakePicture

entry Focus
3/15/09 10-11pmET :

Focusing
3/15/09 10-12pmET :

state1TakePicture
3/15/09 10-12pmET :

Standard
Model Library

User Model

{subsets}

en
tr

y do ex
it

StateOccurrence

entry do exit
: HappensBefore : HappensBefore

Behavior
Occurrence

State Machine Problem (P1.2)

44

act TakePicture

ShootFocus Expose
Cmd

sm TakePicture

ShootFocus
ExposeCmd

Competing
Transitions

Interruptible
Region

Interrupting
Edge

Set
WhitePoint

WB&Expose
Cmd

WB&Expose
Cmd

Set
WhitePoint

Competing Transitions (M1)

45

TakePicture

state2 : Shooting: HappensBefore

D
ur

in
g

state1 : Focusing
exit :

accepted :

acceptable :B
ef

or
e

: Happens

StateOccurrence Transfer

.end state3 : Setting
WhitePoint: HappensBefore

: HappensBefore

0..1

0..1

self
target subsets

accepted

0..1

{subsets}

{ Accepted interaction ends
before the other acceptable
interactions do. }

step1T1 : ExposeCmdXfer 0..1

step1T2 : WB&ExposeCmdXfer 0..1

Standard
Model Library

User
Model

Model
(M1)

self

target

target

acceptable

*

{ Must have value (link) iff
state1.accepted = step1T1. }

{ Must have value (link) iff
state1.accepted = step1T2. }

Competing Transitions (M1Lib/M2)

 Library constraints inherited or reused
– Acceptable/exit timing moved to library.
– Transition constraints use M2.
– Commonly used acceptance constraints. 46

Metamodel
(M2)

State Machine owned
State

fromState

toState

State
TransitionState

trigger
Flow

Transferaccepted

0..1

{subsets}{ Accepted interaction ends
before the other acceptable
interactions do. }

Standard
Model
Library

Constraint eventAccept
Condition

happens
Before 0..1
{redefines}

{ Link must be the value of a
state transition going out of the
state property have self as value,
where the transition’s trigger flow
has a value and = self.accepted. }

State
Occurrence

exit :

accepted :

acceptable :
Model

(M1)

D
ur

in
g

B
ef

or
e

: Happens
.end

For all
models

For models to
use as needed

acceptable

*

47

State Machine Solution (P1.3)
(Reacting to past events)

 So far, states are only triggered by
events that arrive during the state.
 Want to enable states to be triggered by

events that arrive before the state.
– Loosen constraints against this.

Past Events (M1)

 Events arriving before state are acceptable.
– But each event can only be accepted once. 48

TakePicture

state2 : Shooting: HappensBefore

D
ur

in
g

state1 : Focusing
exit :

accepted :

acceptable :B
ef

or
e

: Happens

StateOccurrence Transfer

.end state3 : Setting
WhitePoint: HappensBefore

: HappensBefore

0..1

0..1

self
target subsets

accepted

0..1

{subsets}

step1T1 : ExposeCmdXfer 0..1

step1T2 : WB&ExposeCmdXfer 0..1

Model
(M1)

Standard
Model Library

User
Model

0..1

 acceptable

*

Past Events (M1 Library / M2)

 HappensDuring redefined to apply as
indicated by metamodel boolean. 49

State Machine State
pastEventsOK : Boolean

Transferaccepted

0..1

{subsets}
{ Holds exactly when
pastEventsOK = false }

Standard
Model
Library

State
Occurrence

pastEventsOK : Boolean

exit :

accepted :

acceptable :Model
(M1)

D
ur

in
g

{r
ed

ef
in

es
}

B
ef

or
e

.end

{ Must be typed by M1 State
Occurrence or a specialization. }Behavior owned

Step

type
Step

Metamodel
(M2)

: Happens

owned
State

{ M0 values (state occs) must
have the same pastEventsOK
as self. }

acceptable

*

50

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

Behaviors of Objects

 Objects behave.
– UML “classifier behaviors”.

 States are still states of behaviors …
 … reacting to stimuli arriving at objects.

– Same as arriving at behavior, except … 51

Camera

ShootFocus

sm TakePictureModel
(M1)

State Machine Problem, Part 2

 Multiple object behaviors can react
to the same stimulus (compare to UML)52

Camera

Shoot
Lens1

Focus
Lens1

Shoot
Lens2

Focus
Lens2

sm Take3DPicture

act ProvideLight

ExposeCmd

ExposeCmd

Flash Measure
Light

Expose
Cmd

Model
(M1)

State Machine Requirements, P2
1. Must enable objects to react to stimuli.

– Via behaviors “of” objects.
2. Must synchronize state changes between …

– Machine regions (part of “run-to-completion”).
– Multiple behaviors for the same object.

3. Must manage multiple stimuli arriving at the
same object.

53

54

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

55

State Machine Solution (Part 2.1)
(Objects reacting to stimuli)

 Objects occur in time also.
– With different terminology (creation,

destruction, etc).
 Behaviors can specify an object to be

target of transfers.
– Assume these are behaviors “of” the object.
– Multiple behaviors can specify the same

object.

56

Objects Reacting (M1)

involves

* Object
Occurrence

happens
During

happens
Before

Behavior
Occurrence behaviorOccOf

0..1

Occurrence

Model
(M1)

{subsets}*

*

Standard
Model Library

User
Model

Camera

: Take3DPicture

step1.2 : ShootL1: HappensBefore

behaviorOccOf
targetstepX : ExposeCmdXfer 0..1

end :

step2.2 : ShootL2: HappensBefore

=

step1.1 : FocusL1

step2.1 : FocusL2 self

57

Objects Reacting (M2)

involves

* Object
Occurrence

happens
During

happens
Before

Behavior
Occurrence behaviorOccOf

0..1

Model
(M1)

{subsets}*

*

Standard
Model Library

owned
Property

involves
Property

{subsets}Metamodel
(M2)

Behavior

Property

Object
behaviorOf

0..1

Occurrence

Class

58

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

59

Synchronized Regions (M1)

 Transitions triggered by same event.
– Entries happen before exits across states also.
– Other timing not restricted in UML.

Model
(M1)

Camera

: Take3DPicture

step1.2 : ShootL1: HappensBefore

behaviorOccOf
target

stepX : ExposeCmdXfer 0..1

step2.2 : ShootL2: HappensBefore

step1.1 : FocusL1
entry:
exit :
acceptable :

self
step2.1 : FocusL2
entry:
exit :
acceptable :

: H
ap

pe
ns

B
ef

or
e

subsets

=

: Take3DPicture

step1.2 : ShootL1: HappensBefore

behaviorOccOf
target

stepX : ExposeCmdXfer 0..1

step2.2 : ShootL2: HappensBefore

step1.1 : FocusL1
acceptable :

selfstep2.1 : FocusL2
acceptable :

60

Synchronized Regions (M1, Lib)

Model
(M1)

Transfer
{subsets}

affects

*

* /behaviorState

accepted

0..1

* /allAccepted

Object
Occurrence

Standard
Model Library

User Model

acceptable

*

Camera

{ affects->forall(so1, so2 |
so1.entry happensBefore so2.exit) }

StateOccurrence

subsets
=

Objects, Multiple Behaviors (M1)

 Multiple behaviors reacting to same event.
– Treated as regions (compare to UML).

Model
(M1)

Camera

: ProvideLight

step1 : Flash: HappensBefore

behavioroOccOf
target

stepX : ExposeCmdXfer 0..1

: Take3DPicture

step1.2 : ShootL1: HappensBefore

behaviorOccOf
target

step2.2 : ShootL2: HappensBefore

step1.1 : FocusL1
acceptable :

step2.1 : FocusL2
acceptable :

stepX : ExposeCmdXfer 0..1

step1 : MeasureLight
acceptable :

subsets

subsets

=

62

self

=

=

64

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

UML Event Handling

 Objects have a single “pool” of events.
 One event at a time is

– Checked against transition triggers …
• Matching transitions are taken.

– Removed from the pool …
• Whether or not it triggers transitions (exception later)

65

Model
(M1)

Camera

Event
pool

Shoot
Lens1

Focus
Lens1

Shoot
Lens2

Focus
Lens2

sm Take3DPicture

act ProvideLight

ExposeCmd

ExposeCmd

Flash Measure
Light

Expose
Cmd

Onto-izing UML Event Handling
 UML describes an event handling procedure

(execution engine).
 Classification modeling

– Gives conditions required of valid executions.
• No procedure for handling events.

– Triggers satisfy (match) these conditions, or not.
• Events are not removed from a pool.

– More complex event handling procedures = more
complex classification conditions.

66

Pool as Queue (M1)

 UML: Check events in the order they arrived.
 Accepted events “arrive” in same order as

transitions out of state occs that “accept” them.
– Ends of transfers to self identified as accepted by state

occurrences must be in the same time order as those
occurrences are left. 67

Transfer
{subsets}

affects

*

* /behaviorState

accepted

0..1

* /allAccepted

Object
Occurrence

acceptable

*
StateOccurrence

{ forall(so1,so2 |
so2.exit.start.occursAt > so1.exit.start.occursAt =>
so2.accepted.end.occursAt > so1.accepted.end.occursAt) }

Model
(M1)

Standard
Model Library

Pool as Queue (M2)

 Constraint applies as indicated by
metamodel boolean. 68

Transfer
{subsets}

affects

*

* /behaviorState

accepted

0..1

* /allAcceptedacceptable

*
StateOccurrence

{ acceptEventsInStateOrder =>
behaviorState->forall(so1,so2 |
so2.exit.start.occursAt > so1.exit.start.occursAt =>

so2.accepted.end.occursAt > so1.accepted.end.occursAt) }

Object
acceptEventsInStateOrder: Boolean

Metamodel
(M2)

{ M0 values (object occs) must have
the same acceptEventsInStateOrder
as self. }

Object Occurrence
acceptEventsInStateOrder: Boolean

Model
(M1)

Standard
Model Library

Deferrable Events
 UML states can indicate some

events remain in the pool.
– Even though they were checked

against transitions triggers.
 Transfers to objects that do

not violate classification
conditions.
– Deferral specified as exceptions

to normal conditions.

69

Deferrable Events (in Queuing)

 Transfer arrival condition loosened
for deferrable events.

70

{subsets}

affects

*

* /behaviorState

accepted

0..1

* /allAccepted

Object
Occurrence

acceptable

*

Model
(M1)

Standard
Model Library

deferrable

*

TransferStateOccurrence

{ forall(so1,so2 |
so2.exit.start.occursAt > so1.exit.start.occursAt =>
(so2.accepted.end.occursAt > so1.accepted.end.occursAt

or (so1.start.occursAt < so2.accepted.end.occursAt
and so1.deferrable->includes (so2.accepted)))) }

Deferrable Events (in Past Events)

 Past event condition loosened for
deferrable events. 71

Transfer
accepted

0..1

{subsets}

Standard
Model Library

State
Occurrence

pastEventsOK : Boolean

exit :

accepted :

acceptable :
Model

(M1)

D
ur

in
g

{r
ed

ef
in

es
}

B
ef

or
e

.end
: Happens

acceptable

*

deferrable

*

* /behaviorState * /allAccepted

Object Occurrence

{ Holds when pastEventsOK = false except if
behaviorStateOf.behaviorState->forall(so1 |

(self.start.occursAt > so1.start.occursAt
and so1.start.occursAt > so2.accepted.end.occursAt
and so1.deferrable->includes (so2.accepted)))) }

0..1 /behaviorStateOf

72

State Machine TBD (Post P1)
 Events arriving at objects.
 Concurrent regions.
 More complex event handling.

– Deferrable events
– Completion events

 Event content
 Transitions

– Guards
– Internal

 Pseudostates
– State entry / exit points
– History, etc.

 Submachine states

73

Overview
 RoadMap
 Motivation

– Behavior, review
– Interactions, review
– State machines Part 1, review
– State machines Part 2, requirements

 State Machines Solution, Part 2
1. Objects reacting to stimuli
2. Synchronizing state changes
3. Managing stimuli

 Summary

Summary
 Objects react to stimuli via

– Transfers targeting objects.
– Behaviors reacting to these transfers arriving.

• For any kind of behavior that reacts to events.
 State changes synchronized by

– Constraining exit behavior timing across
regions and behaviors.

 Stimuli managed by timing constraints on
events and state occurrences.
– Same effect as UML event processing (mostly).

 Speeds learning and analysis integration.74

More Information
 Intro to Behavior as Composite Structure

– http://doc.omg.org/ad/2018-03-02
 Interaction as Composite Structure

– http://doc.omg.org/ad/18-06-11
 Object-orientation as Composite Structure

– http://doc.omg.org/ad/18-09-07
 State Machines as Composite Structure, Part 1

– http://doc.omg.org/ad/18-12-09
 Earlier slides (more onto, includes interactions)

– http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

 Paper: http://dx.doi.org/10.5381/jot.2011.10.1.a3

 Application to BPMN: http://conradbock.org/#BPDM

 KerML: Contact Chas Galey charles.e.galey@lmco.com
75

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://doc.omg.org/ad/18-12-09
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
mailto:charles.e.galey@lmco.com

	State Machines as�Composite Structure:�(Onto)Logical State Machines�Part 2
	Overview
	Behavior as Composite Structure Presentation Stack

	Motivation, Behavior, review
	Original Problem
	General Solution
	Behavior as Composite Structure
	Behavior as Timing Constraints
	Behavior as Timing Constraints
	Behavior as “Composite Timing”
	Behavior as “Composite Timing”

	Model and Things Being Modeled
	M0 M1 Synonyms
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Benefits
	Benefits: Original Problem
	Benefits: Expressiveness
	Benefits: Expressiveness
	Benefits: Modeled Semantics
	Benefits: Classification Semantics

	Interactions Review
	Interactions Problem
	Interactions Requirements
	Interactions Solution (Part 1)�(between things that outlive interactions)
	Transfers (M1)
	Interactions (M2)
	Flow Steps

	State Machine, Part 1 Review
	States of What?
	States of Behaviors
	State Machine Problem, Part 1
	State Machine Requirements, P1
	State Machine Solution (Part 1.1)�(Reacting to stimuli)
	UML Events = Ends of Transfers
	State Machines (M2)
	State Behaviors (M1)

	State Machine Problem (P1.2)
	Competing Transitions (M1)
	Competing Transitions (M1Lib/M2)

	State Machine Solution (P1.3)�(Reacting to past events)
	Past Events (M1)
	Past Events (M1 Library / M2)

	State Machine, Part 2 Requirements
	Behaviors of Objects
	State Machine Problem, Part 2
	State Machine Requirements, P2

	State Machine Solution, Part 2
	State Machine Solution (Part 2.1) (Objects reacting to stimuli)
	Objects Reacting (M1)
	Objects Reacting (M2)

	State Machine Solution (Part 2.2) (Synchronizing state changes)
	Synchronized Regions (M1)
	Synchronized Regions (M1, Lib)
	Objects, Multiple Behaviors (M1)

	State Machine Solution (Part 2.3) (Managing stimuli)
	UML Event Handling
	Onto-izing UML Event Handling
	Pool as Queue (M1)
	Pool as Queue (M2)
	Deferrable Events
	Deferrable Events (in Queuing)
	Deferrable Events (in Past Events)

	State Machine TBD (Post P1)
	Summary
	More Information

