
Activities as Composite Structure:
(Onto) Logical Activity Modeling

Conrad Bock
U.S. National Institute of Standards and Technology

Raphael Barbau
Engisis

2

Overview
 RoadMap
 Motivation

– Behavior, review
– Activities, requirements

 Activities Solution
1. Control nodes
2. Loops
3. Specialization

 Summary

Behavior as Composite Structure
Presentation Stack

3

Onto State Machines, Parts 1 & 2
(ad/18-12-09, 19-03-02)

Onto Behavior Basics
(ad/2018-03-02)

Onto Interactions
(ad/18-06-11)

Onto OO
(ad/18-09-07)

Onto Activities
(this one)

4

Overview
 RoadMap
 Motivation
 Behavior, review
 Activities, requirements

 Activities Solution
 Control nodes
 Loops
 Specialization

 Summary

Original Problem
 UML has three behavior diagrams.

– Activity, state, interaction.
 Very little integration or reuse between

them.
– Three underlying metamodels.
– Three representations of temporal order.

 Triples the effort of learning UML and
building analysis tools for it.

5

General Solution
 Treat behaviors as assemblies of

other behaviors.
– Like objects are assemblies of other

objects.
 Assembly = UML internal structure

– Pieces represented by properties.
– Put together by connectors.

 Put all behavior diagrams on the
same underlying behavior assembly
model.

6

stm TireTraction [State Diagram]

Gripping Slipping

LossOfTraction

RegainTraction

Behaviors as Composite Structure

7

sd ABS_ActivationSequence [Sequence Diagram]

detTrkLos()

modBrkFrc()

sendSignal()

modBrkFrc(traction_signal:boolean)

sendAck()

d1:Traction
Detector

m1:Brake
Modulator

act PreventLockup [Activity Diagram]

Activity

State Machine

Interaction

Property

Connector

Property

Connector

Property

Connector

8

Behavior as Timing Constraints

 Behaviors model “things” happening over time.
– With temporal relations (time constraints) between them.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Happens during

Happens before

9

Behavior as Timing Constraints

 The TakePicture occurrence on the right does
not follow the behavior model.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

10

Behavior as “Composite Timing”

 Composite structure relations are temporal:
– Part-whole = happens during.
– Part-part = happens before.

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Part-whole

Part-part

Part-whole Part-part

Behavior as “Composite Timing”

11

class TakePicture

step1: Focus

step2 : Shoot

: HappensBefore

Focusing before shooting in same taking picture

Model
(M1)

Things
Being
Modeled
(M0)

:Happens
Before

:Happens
Before

step2 step2step1step1

TakingPic2:

Focusing
DuringTP2:

Shooting
DuringTP2:

Shooting
DuringTP1:

TakingPic1:

Focusing
DuringTP1:

HappensBefore

step1
Focus

step2
Shoot

Property
(whole-part)

Connector
(part-part)

Not instance specs

Model and Things Being Modeled

 Dashed arrows between M1 and M0
mean 12

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

M0  M1 Synonyms

Classified by
Modeled by
Specified by
Conforms to
Follows
Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sense)13

Time

Shoot

Focus
Behavior

Take Picture

TakePicture

ShootFocus
Model
(M1)

Things
Being
Modeled
(M0)

Behavior: What’s Being Modeled?

 “Things” that occur in time
– Eg, taking a picture, focusing, etc.
– Not “behaviors”, “actions”, etc.

14

Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Real,
Simulated,
or Desired

Things Being
Modeled (M0)

Shoot
3/15/0911-12pmET :Not instance

specs.

Behavior: What’s in Common?

 They happen before or during each
other.
– Construct M1 library for this.
– Use it to classify things being modeled. 15

Things Being
Modeled (M0)

happens
During-1 Focus

3/15/09 10-11pmET :
TakePicture

3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

happensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

happens
During-1

Behavior: Use Library

 Specialize library classes and
subset/redefine library properties. 16

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

Behavior
Occurrence

happens
During-1

happens
Before

Standard
Model Library

(M1)

User Model
(M1)

step2

TakePicture

step1 : Focus step2 : Shoot
: HappensBefore

{subsets}

Behavior: Too repetitive at M1?

 Capture M1 patterns in M2 elements.
– Tools apply patterns automatically.

17

Property

type

owned
Property

Connector
role

type

fromStep

toStep

owned
Connector

Association

Class

Step
ownedStep

Behavior

{redefines}

Metamodel
(M2)

Things Being
Modeled (M0)

step1 Focus
3/15/09 10-11pmET :

TakePicture
3/15/09 10-12pmET :

Shoot
3/15/0911-12pmET :

HappensBefore

User Model
(M1)

step2

TakePicture

step2 : Shoot
: HappensBefore

Succession

step1 : Focus

Benefits: Original Problem
 Flexibility in using metamodels

– Add metaelements as needed to simplify
library usage.

 Many metaelements become synonyms
– Application / method / diagram-specific

terminology sharing same semantics.
– M2 actions, states, etc, => M1 happensDuring

 Learning UML and building analysis tools
for it is easier
– Due to shared semantics for variety of

modeling language terminology. 18

19

Benefits: Expressiveness

 Constraints are inherited in UML
– including temporal constraints.

Time

Focus

TakePicture

Shoot

TakeSpecialPicture

Log
Behavior

Take Picture

MultiFocus

ShootFocus ShootMulti
Focus Log

Model
(M1)

Things
Being
Modeled
(M0)

MultiFocusFocus

HappensDuring

HappensBefore

Benefits: Expressiveness

 Combine activity and state machines.
– States and actions happen during their

“containing” occurrences, ordered in time.20

TakePicture

ShootFocus
button
Press

: Exposure

Event

Object flow

: Exposure

Benefits: Modeled Semantics
 UML semantics is written in free text

– Specifying an execution procedure for
activities and state machines:

– and trace classification in interactions:

 Model in standard libraries. 21

Benefits: Classification Semantics
 Standard execution models for UML

– fUML, PSCS, PSSM
– Procedures that create a behavior occurrence

• Conforming to a UML model.
– Don’t tell whether

• An existing behavior occurrence conforms.
• Tools are producing correct occurrences

 Classification does the opposite
– Tells whether an existing behavior occurrence

conforms to a model.
– Doesn’t say how to create an occurrence.
– Execution engines are constraint solvers. 22

23

Overview
 RoadMap
 Motivation
 Behavior, review
 Activities, requirements

 Activities Solution
 Control nodes
 Loops
 Specialization

 Summary

Activity Problem
 UML has three ways to coordinate

sequences of behaviors:
– Activities have control nodes.
– State machines have pseudostates.
– Interactions have combined fragments.

 Very little integration or reuse.
– Three underlying metamodels.
– Three representations of “control”.

 Triples the effort of learning UML and
building analysis tools for it.

24

sm TakePicture

Activity Problem, Control

25

act TakePicture

Focus

Shoot

Reset

sd TakePicture[goahead]

[abort]

Focus

Shoot

Reset

[goahead]

[abort]

Choice
Pseudostate

Decision
Node

focus

alt

: Camera: Controller

shoot

reset
[abort]

[goahead]

Alternative
Combined Fragment

act TakePicture

Activity Problem, Loops

26

Focus Shoot
sd TakePicture

sm TakePicture

loop

: Camera: Controller

focus

shoot

Loop
Combined Fragment

Focus Shoot

Merge
Node

Implicit
Junction

Activity Problem, Specialization
 Behaviors are classes in UML

– Their M0 instances are executions.
 Classes can be special/generalized

– Semantics = sub/supersets of M0 instances
= inheriting timing constraints

 Behaviors can special/generalized, but …
 Generalization semantics not used.

– Nothing said in activities.
– SMs have syntactic redefinition rules.
– Interactions use trace semantics. 27

Activity Problem, Specialization

 What can be added in specialized behaviors
and still obey inherited timing constraints?28

act TakePicture

Focus

act TakePicture

Focus

Shoot

Reset

[yes]

[no]

act STakePicture

Focus

Shoot

Reset

[yes]

[no]

StandBy
[maybe]

act STakePicture

Focus SetWB

Shoot

Shoot

Activity Requirements
 Single model & semantics for

coordinating sequences of behaviors
– Control nodes, loops.

 Use generalization semantics for
specializing behaviors.
– Subsets of occurrences / executions

29

30

Overview
 RoadMap
 Motivation
 Behavior, review
 Activities, requirements

 Activities Solution
 Control nodes
 Loops
 Specialization

 Summary

Connector Multiplicities

 Connector multiplicities constrain the
number of links due to a connector for
each value of the end properties. 31

class TakePicture

step1 step2
happensBefore

step1

step2

*

1 1

ShootFocus

act TakePicture

Behavior Occurrence

happens
Before *

Shoot

Focus

Connector Multiplicities

 Satisfying and not satisfying occurrences
– Valid / invalid
– Conforming / nonconforming, etc

32

class TakePicture

step2
step1

1 1

Each value (occurrence) of
step2 must happenAfter

exactly one value of step1.

Each value (occurrence) of
step1 must happenBefore

exactly one value of step2.

A value
(occurrence)

of step 1
A value
(occurrence)
of step 2

Red values
(occurrences)
do not satisfy

connector
multiplicities

happensBefore

Control Nodes (Fork)

 Same multiplicities, multiple connectors33

act ForkEg

step1
step 2a

step 2b

happensBefore
step2a

happensBefore
step2b

1 1

1 1

class ForkEg

step1

step2a
step1

step2b

Connector Multiplicities (Fork)

34

class ForkEg
1 1

1 1

Each value (occurrence) of step2a
and of step2b must happenAfter
exactly one value of step1.

Each value (occurrence) of step1
must happenBefore exactly one

value of step2a and of step2b.

Red values
(occurrences)
do not satisfy

connector
multiplicities

happensBefore

happensBefore

Fork Nodes, Graphic

 NoOp is a predefined behavior with
no steps and zero duration.
– Introduced for “node” appearance.

 Same effect as previous slide. 35

happensBefore
step2a

happensBefore

step1

step2b

1
1

1
1

class ForkEg

: NoOp
happensBefore

1 1

Control Nodes (Decision)

 Connector multiplicities loosened
 What ensures that step2a/b happen at all?36

act TakePicture

Focus

Shoot

Reset

class TakePicture

happensBefore
step2a

happensBefore

step1

step2b

1
0..1

1
0..1

: NoOp
happensBefore

1 1

Decision Nodes, Closed, #1

 Add guards where exactly one succeeds.37

{ xor goahead
abort }

class TakePicture

happensBefore
step2a

happensBefore

step1

step2b

1

0..1

1

0..1

: NoOp
happensBefore

1 1

[goahead]

[abort]

act TakePicture

Focus

[goahead]

[abort]

Shoot

Reset

Decision Nodes, Closed, #1

 Guard conditions must be sufficient
to infer (require) connector values.

38

{ xor goahead
abort }

class TakePicture

happensBefore
step2a

happensBefore

step1

step2b

1

0..1

1

0..1

no:NoOp
happensBefore

1 1

{ if goahead size() = no->size() }
{ if ~goahead isEmpty }

{ if abort size() = no->size() }
{ if ~abort isEmpty }

Decision Nodes, Closed, #2

 Enumerate alternative branches
 Supports else (empty guard). 39

class TakePicture

happensBefore
step2a

happensBefore

step1

step2b

1
0..1

1
0..1

: NoOp
happensBefore

1 1

step2e
happensBefore

0..1

[goahead]

[abort]{ let hb = happensBefore
xor hb->includes(step2a)
hb->includes(step2b)
hb->includes(step2e) }

act TakePicture

Focus

[goahead]

[abort]

Shoot

Reset

Standby
[else]

Decision Nodes, Open

 Pro: Same for any number of branches.
 Con: Doesn’t require branches to happen.

40

class TakePicture

happensBefore
step2a

happensBefore

step1

step2b

1

0..1

1
0..1

: NoOp
happensBefore

1 1

{ happensBefore->size() = 1 }

Decision Guards, Open

 Sufficient constraints on connector values.41

act TakePicture

Focus

[goahead]

[abort]

Shoot

Reset

class TakePicture

happensBefore
step2a

happensBefore

step1

step2b

1

0..1

1

0..1

: NoOp
happensBefore

1 1

{ happensBefore->size() = 1 }

{ if goahead size() = no->size() }
{ if ~goahead isEmpty }

{ if abort size() = no->size() }
{ if ~abort isEmpty }

Decision Nodes, Open

 No else or empty guards 42

act TakePicture

Focus

[goahead]

[abort]

Shoot

Reset

class TakePicture

happensBefore
step2a

happensBefore

step1

step2b

1
0..1

1
0..1

: NoOp
happensBefore

1 1

{ happensBefore->size() = 1 }

Standby
[else]

step2e
happensBefore

0..1

[goahead]

[abort]

[else]

Control Nodes (Join)

 Reverse of fork 43

act JoinEg

step2
step 1a

step 1b

class JoinEg

happensBeforestep1a

happensBefore

step2

step1b

1
1

1
1

: NoOp
happensBefore

1 1

Control Nodes (Merge)

 What ensures each merge happens
due to exactly one previous step? 44

act TakePicture

step2

step1a

Step2

class TakePicture

happensBefore
step1a

happensBefore

step2

step1b

1
0..1

1
0..1

: NoOp
happensBefore

11

Merge Nodes, Closed

 Pro: Each merge will happen due to
exactly one of step2a or step2b.
 Con: Must be updated when branches

change. 45

class TakePicture

happensBeforestep2a

happensBefore

step1

step2b

1

0..1

1

0..1

: NoOp
happensBefore

11{ let ha = happensAfter
ha->includes(step2a) xor
ha->includes(step2b) }

Merge Nodes, Open, Not

 Pro: Same for any number of alternatives.
 Con: Doesn’t require alternatives to happen

for merge to happen.
– No guards to give sufficient conditions. 46

class TakePicture

happensBeforestep2a

happensBefore

step2

step2b

1
0..1

1
0..1

: NoOp
happensBefore

11

{ happensAfter->size() = 1 }

Control Nodes (M1)

 Could include control occurrences:

47

NoOpOccurrence

Behavior
Occurrence

happens
During

happens
Before

{ happensDuring-1={self} }

{ happensBefore->includes(self) }

Unless decisions
have behaviors

Standard
Model Library

(M1)

{ happensBefore->size()=1 }{ happensBefore-1->size() = 1 }

Join
Occ

Fork
Occ

Merge
Occ

Decision
Occ

Control Nodes (M2)

 Define M1 patterns
– Step type, connector multiplicities, M1 constraints.

48

{ Outgoing succession source and
target multiplicities = 1 and 0..1,
respectively. }

{ Incoming succession source and
target multiplicities = 0..1 and 1,
respectively. }

{ Outgoing succession source
and target multiplicities = 1. }

{ Incoming succession source
and target multiplicities = 1. }

Join
Node

Fork
Node

Merge
Node

isClosed=true

Decision
Node

{ Must have constraint
happensBefore->size()=1. }

Step

Control Node
isClosed : Boolean = false

{ Must must be typed by NoOpOccurrence.}

{ When isClosed = true, must have constraint
that happensBefores in which values
participate must have values of a controlled
step at the other end. }

{ Must have constraint
enumerating incoming steps. }
{ Must have constraint
happensAfter->size()=1. }

49

Overview
 RoadMap
 Motivation
 Behavior, review
 Activities, requirements

 Activities Solution
 Control nodes
 Loops
 Specialization

 Summary

Loops

 Multiple occurrences per step.
– Also applies to event-driven and

streaming behaviors.
50

class TakePictures

happensBefore

step1

step2

1 1

ShootFocus

act TakePictures

happensBefore

1 1step1 step2

*

Behavior Occurrence

happens
Before *

Shoot

*

*

Focus

step2step1

Multiple Occurrences (#1)

 happensBefore is transitive …
– but links inferred this way are not due to

connectors, and are not counted in
connector multiplicities. 51

class TakePictures

1 1

1 1

3

1 2

4

Due to
connector

Due to
transitivity,
not connector.

happensBefore

happensBefore

happensBefore

step2step1

Multiple Occurrences (#1)

 Connectors …
– Are properties typed by associations.
– Values are links due to connector (counted

by connector multiplicities).
52

class TakePictures

1 1

1 1

3

1 2

4

Due to
(value of)
connector Due to

transitivity,
not (value of)
connector.

happensBefore

happensBefore

hb-1-2 : HappensBefore

hb-2-1 : HappensBefore

happensBefore

happens
Before

step2step1

Multiple Occurrences (#2)

 Connectors typed by intransitive (“direct”)
happens before
– Implies (transitive) happens before
– But not vice-versa.

53

class TakePictures

1 1

1 1

3

1 2

4

dHappensBefore

dHappensBefore

hb-1-2 : DirectHappensBefore

hb-2-1 : DirectHappensBefore

dHappensBefore

Behavior
Occurrence

Happens
Before

Direct
HappensBefore

happens
Before

* *happensBefore

* *dHappensBefore

{ subsets}

54

Overview
 RoadMap
 Motivation
 Behavior, review
 Activities, requirements

 Activities Solution
 Control nodes
 Loops
 Specialization

 Summary

Specialization (Add’l Steps)

 Do additional steps in specialized behaviors
follow generalization semantics?
– Sub/supersets of M0 instances
– Inheriting timing constraints 55

class TakePicture

step1 step2
happensBefore

1 1

act TakePicture

Focus

act STakePicture

Focus SetWB

Shoot

Shoot

class STakePicture

step1 step21 1step1.5
1 1

happens
Before

happens
Before

Additional Steps

 Specialized behaviors can have additional steps
 Executions of STakePicture perform step1 and step2
 Multiplicities satisfied on connectors separately

56

step2step1

class TakePicture

1 1

1 2

happensBefore

^step2^step1

class STakePicture

1 1

1 2

happensBefore

step1.5

1.5

1 1
happensBefore

1 1

happensBefore

happensBefore

happensBefore

happensBeforehappensBefore



Specialization (Add’l Branches)

 Do additional control node branches in
specialized behaviors follow
generalization semantics? 57

act TakePicture

Focus

Shoot

Reset

[yes]

[no]

act STakePicture

Focus

Shoot

Reset

[yes]

[no]

StandBy
[maybe]

happensBefore step2a

happensBefore
step2b

1 0..1

1 0..1

TakePicture

happens
Before

1 1

^happensBefore ^step2a

^happensBefore
^step2b

1 0..1

1

0..1

STakePicture

^happens
Before

1 1 ^: NoOp

happensBefore
step2c

1

0..1

[yes]

[no]
step1

^step1
^[yes]

^[no]

[maybe]

: NoOp

Additional Branches (Fork)

 Specialized behavoirs can have add’l fork branches
– Executions of SpecialForkEg perform step2a and step2b

after each fork. 58

happensBefore
step2a

happensBefore

step1
step2b

1 1
1 1

ForkEg

happensBefore

1 1
: NoOp

^happensBefore
^step2a

^happensBefore

^step1
^step2b

1 1
1 1

SpecialForkEg

happensBefore

1 1 ^: NoOp

happensBefore
step2c1 1



Additional Branches (Decision)

 Generalized behavior is open.
 Specialized (leaf) behavior is closed (#1 used above)
 Generalized guards can all fail, some can be empty
 No reasoning based on generalized behavior

59

{ xor goahead
abort standby }

Yes, if …

happensBefore step2a

happensBefore
step2b

1 0..1

1 0..1

DecisionEg

happens
Before

1 1

^happensBefore ^step2a

^happensBefore
^step2b

1 0..1

1

0..1

SpecialDecisionEg

^happens
Before

1 1 ^: NoOp

happensBefore
^step2e

1

0..1

[goahead]

[abort]
step1

^step1
^[goahead]

^[abort]

[standby]

: NoOp

happensBefore
step2e1 0..1

{ happensBefore->size() = 1 }

~

Additional Branches (Decision)

 Generalized behavior is open.
 Specialized (leaf) behavior is closed (#2 above, else)
 Generalized guards can all fail, some can be empty
 No reasoning based on generalization behavior

60

Yes, if …

happensBefore step2a

happensBefore
step2b

1 0..1

1 0..1

DecisionEg

happens
Before

1 1

^happensBefore ^step2a

^happensBefore
^step2b

1 0..1

1

0..1

SpecialDecisionEg

^happens
Before

1 1 ^: NoOp

happensBefore
^step2e

1

0..1

[goahead]

[abort]
step1

^step1
^[goahead]

^[abort]

: NoOp

happensBefore
step2e1 0..1

{ happensBefore->size() = 1 }

~
{ let hb = happensBefore

xor hb->includes(step2a)
hb->includes(step2b)
hb->includes(step2e) }

Additional Branches (Join)

 Specialized behaviors can have add’l join branches
– Executions of SpecialForkEg perform step1a and step1b

before each join. 61

happensBefore

JoinEg

SpecialJoinEg

step2
11
11

happensBefore

11
happensBefore

: NoOp

^happensBefore

^happensBefore

^step2
11
11

^happensBefore

11^: NoOp

happensBefore
step1c 11

step1a

step1b

^step1a

^step1b

Additional Branches (Merge)

 Generalized behavior is open.
 Specialized behavior is closed
 No reasoning based on generalized behavior 62

MergeEg

SpecialMergeEg

happensBeforestep1a :

happensBefore
step1b :

10..1

10..1

happensBefore

11: NoOp
step2 :

^happensBefore^step1a :

^happensBefore
^step1b :

10..1

10..1

^happensBefore

11^: NoOp

happensBefore
step1c :

10..1

^step2 :

{ happensBefore-1->size() = 1 }

Yes, if …
~

{ let ha = happensAfter
xor ha->includes(step2a)
ha->includes(step2b)
ha->includes(step2c) }

Activity TBD
 Regions

– Interruptable
– Expansion

 Object Nodes / Flows
– Queuing
– Weight

 Exceptions

63

64

Overview
 RoadMap
 Motivation
 Behavior, review
 Activities, requirements

 Activities Solution
 Control nodes
 Loops
 Specialization

 Summary

Summary
 Sequences of behaviors coordinated by:

– Multiplicities on HappensBefore connectors.
– Additional constraints for sufficiency or closure

in some cases.
– NoOp steps (control nodes) and metamodel.
– HappensBefore connectors specifying links

• Only due to connector multiplicities or
• Intransitive (“direct”) HappensBefore

 Generalization for specializing behaviors by:
– Multiplicities on HappensBefore connectors.
– Specialize open control nodes to close them.65

More Information
 Intro to Behavior as Composite Structure

– http://doc.omg.org/ad/2018-03-02
 Interaction as Composite Structure

– http://doc.omg.org/ad/18-06-11
 Object-orientation as Composite Structure

– http://doc.omg.org/ad/18-09-07
 State Machines as Composite Structure, Parts 1&2

– http://doc.omg.org/ad/18-12-09, http://doc.omg.org/ad/19-03-02
 Earlier slides (more onto, includes interactions)

– http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

 Paper: http://dx.doi.org/10.5381/jot.2011.10.1.a3
 Application to BPMN: http://conradbock.org/#BPDM
 KerML/SysML2: Contact Chas Galey charles.e.galey@lmco.com

66

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://doc.omg.org/ad/18-12-09
http://doc.omg.org/ad/19-03-02
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
mailto:charles.e.galey@lmco.com

	Activities as Composite Structure:�(Onto) Logical Activity Modeling
	Overview
	Overview
	Behavior as Composite Structure Presentation Stack

	Motivation, Behavior review
	Original Problem
	General Solution
	Behavior as Composition
	Behaviors as Composite Structure
	Behavior as Timing Constraints
	Behavior as Timing Constraints
	Behavior as “Composite Timing”
	Behavior as “Composite Timing”

	Onto Behavior Modeling
	Model and Things Being Modeled
	M0  M1 Synonyms
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Benefits
	Benefits: Original Problem
	Benefits: Expressiveness
	Benefits: Expressiveness
	Benefits: Modeled Semantics
	Classification Semantics

	Activities, requirements
	Activity Problem
	Activity Problem, Control
	Activity Problem, Loops
	Activity Problem, Specialization
	Activity Problem, Specialization
	Activity Requirements

	Activities Solution
	Connector Multiplicities
	Connector Multiplicities
	Connector Multiplicities

	Control Nodes
	Fork
	Connector Multiplicities (Fork)
	Fork Nodes, Graphic

	Decision
	Closed
	Decision Nodes, Closed, #1
	Decision Nodes, Closed, #1
	Decision Nodes, Closed, #2

	Open
	Decision Nodes, Open
	Decision Guards, Open
	Decision Nodes, Open

	Join
	Merge
	Merge Nodes, Closed
	Open, Not

	Model Library
	Metamodel

	Loops
	Loops
	Multiple Occurrences (#1)
	Multiple Occurrences (#1)
	Multiple Occurrences (#2)

	Specialization
	Additional Steps
	Additional Steps?
	Additional Steps, Occurrences

	Additional Branches
	Additional Branches?
	Fork
	Decision, Closure #1
	Decision, Closure #2
	Join
	Merge

	Activity TBD
	Summary
	More Information

