engineering

Io]elogRe|

¥

~

Activities as Composite Structure:
(Onto) Logical Activity Modeling

Conrad Bock
U.S. National Institute of Standards and Technology

Raphael Barbau
Engisis

NIST

Motienal Institute of Standards and Technology

Overview

= RoadMap

= Motivation

— Behavior, review

— Activities, requirements
= Activities Solution

1. Control nodes

2. Loops

3. Specialization

= Summary

Behavior as Composite Structure
Presentation Stack

Onto Activities
(this one)

Onto State Machines, Parts 1 & 2
(ad/18-12-09, 19-03-02)

Onto OO
(ad/18-09-07)

Onto Interactions
(ad/18-06-11)

Onto Behavior Basics
(ad/2018-03-02)

Overview

= RoadMap

= Motivation

= Behavior, review

= Activities, requirements
= Activities Solution

= Control nodes

= Loops

= Specialization
= Summary

Original Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.

General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pieces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.

Behaviors as Composite Structure

act PreventLockup [Activity Diagrarm])

Property

Property (| ™ ___ _ _
_} : TractLo

ion ingForce
J— _Tmil'usi — d1:Tract’ﬂ m1:Brake
Detect/r Modulator
j
Connector — il

detTrkLos()

sd ABS_ActivefionSequence [Sequence Diagram])

Activity I<:|
Pro pe rty \ SendSignal()

modBrkFrc(traction_signal:boolean)p

stm TireTractio\[State Diagram|) modBrkFrc()

\l/ (—LossOfTractionﬂ
sendAck()
Gripping J [Slipping J <
:. j A .

ﬂLRegainTraction—) / Interaction

Connector / State Machine Connector

-

Behavior as Timing Constraints

N\

(TakePicture
Model

Happens before

Things Behavior

-
-
-
-
-
-
-
-
f’
-

Being Focus I—I‘S’
Modeled Shoot T g I—I £ sl—l
(MO) Take Picture 4+~ pF—x /’
= >
Happens during Time

= Behaviors model “things” happening over time.
— With temporal relations (time constraints) between them.

Behavior as Timing Constraints

N\

(TakePicture
Model

Things Behavior

zeing Foows 1 il /H
Modeled Shoot T g — |—|2
(MO) Take Picture + | l : l
>
Time

= The TakePicture occurrence on the right does
not follow the behavior model.

Behavior as “Composite Timing”

N\

.
Part-whole ._| TakePicture Part-part
Model N '

Things Behavior 7 Pal’t-eal’t
Being Focus —+ |—g|’ ,,,, |_|/,/
Modeled Shoot T é\ — 4 —
(MO) Take Picture + | \‘\ I /'/i :
~ ’,/' >
Part-whole fime

= Composite structure relations are temporal:
— Part-whole = happens during.

10
— Part-part = happens before.

Behavior as “Composite Timing”

Model class TakePicture J stepl
(M1) > Focus
—>| stepl: Focus

Property” N Happenssefore

(whole-part) /9 : HappensBefore
7 step2
Connector step2 : Shoot <> Shoot
(part-part)
Things Not instance specs
Being TakingPicl: TakingPic2:
Modeled
(MO)
stepl | :Happens |Step2 stepl] :Happens _|Step2
Focusing | Before [Shooting Focusing | Before | shooting

DuringTP1: ,t\ DuringTP1:| |DuringTP2: ,I\ DuringTP2:

Focusing before shooting in same taking picture *

Model and Things Being Modeled

(]
TakePicture

Model
_ J
A
Things Behavior ,-: |'-‘
Being Focus -—T b—A '." “\‘ n
Modeled Shoot + £ gl—l / \ Q(\N—I
(MO) Take Picture + | :l | =
>
Time

= Dashed arrows between M1 and MO
mean 12

MO - M1 Synonyms

rTakePictu re

Classified by e w

Modeled by k AR
Specified by | ™
Things Behavior . ': ‘.‘ L
i Focus - G
Conformsto g, T0T R/ A\l
(MO) Take Pi N (I ‘\
FOIIOWS ake Picture I 1 I 5
Time

Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sens®)

Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or Desired 3/15/09 10-11pmET :
Things Being ——

akePicture
Modeled (MO) 3/15/09 10-12pmET :
Shoot
Not instance 3/15/0911-12pmMET :

specs.

= “Things” that occur in time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.

14

Behavior: What's in Common?

Standard :
Model Librar happens penavior happens
y Before% Occurrence eDuring'1
(M1) A A
! !
I |
I |
: happens
LN Focus
. . 3/15/09 10-11pmET :
Things Being TakePicture h Bef
a ensoberore
Modeled (MO) 3/15/09 10-12pmMET : - ‘l’
Shoot
happens| 3/15/0911-12pmET :

During-?

= They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled. =

Behavior: Use Library

Standard :
Model Librar happens Behavior happens
y Before L Occurrence ¢« IDuring
(M1)
? {subsets}
TakePicture
User Model
9 : HappensBefore
(M1) stepl: Focus >lstep2: Shoot
L R
N\ ’
1 /
! {
]
' atep- 1) Focus
Thi Bei \ 3/15/09 10-11pmET ;
Ings being TakePicture \
H Bef
Modeled (MO0) 3/15/09 10-12pmET : N - abpens eore\l,
step
Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties.

Behavior: Too repetitive at M1?

—— | pe
l type Association él c(J:Wned t
Metamodel v o, Owned o Jnneeter
perty
(M2) Class [@—— 1 Property Connector
4 4 4 %edefines} 4
ownedStep fromStep
Behavior ; Step Succession
- toStep
A 2= A
! - :
1 /, . -
/ TakePicture
User Model ! 7
M1 : HappensBefore//
(M1) stepl: Focus >|step2: Shoot
o7
A K¢
1
| I
- : \ stepl
Things Being v > 3./15/09F(1)oci11S ET
-11pm .
Modeled (MO : \
(MO) TakePicture AR HappensBefore\l/
3/15/09 10-12pmET : N tep2
step
Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.

17

Benefits: Original Problem

= Flexibility in using metamodels

— Add metaelements as needed to simplify
library usage.

= Many metaelements become synonyms

— Application / method / diagram-specific
terminology sharing same semantics.

— M2 actions, states, etc, => M1 happensDuring

= Learning UML and building analysis tools
for It Is easler

— Due to shared semantics for variety of
modeling language terminology.

18

Benefits: Expressiveness

Model Focus IQ— MultiFocus
(M1) [TakePicture) TakeSpecialPicture
<}— Multi
o {0
A T\\‘ A
. L T)
Behavior |, _____ Moo ot e oo \
] 1]]
Things Log —
Being Shoot - (I_I I—I I—I
Modeled Focus T =— (Z\\
"~ HappensBefore
(MO) MultiFocus T 6\ — PP
Take Picture + | | | ‘\ | | :
\\ . >
HappensDuring Time

= Constraints are inherited in UML
— Including temporal constraints.

19

Benefits: Expressiveness

Event \

(TakePicture \I h

button
Press
Focus 1 Shoot —>@
: Exposure /\ : Exposure
L J

\ Object flow

= Combine activity and state machines.

— States and actions happen during their
“containing” occurrences, ordered in time,,

Benefits: Modeled Semantics

= UML semantics Is written in free text

— Specifying an execution procedure for
activities and state machines:

Tokens are offered to an ActivityEdge by the source ActivityNode of the edge. Offers propagate through ActivityEdges
and ControlNodes, according to the rules associated with ActivityEdges (see below) and each kind of ControlNode (see
sub clause 15.3) until they reach an ObjectNode (for object tokens) or an ExecutableNode (for control tokens and some
object tokens as specified by modelers, see ObjectNodes in sub clause 15.4). Each kind of ObjectNode (see sub clause

15.4) an|
accepteq
Activity]
which a

The processing of Event occurrences by a StateMachine execution conforms to the general semantics defined in Clause
13. Upon creation, a StateMachine will perform its initialization during which it executes an initial compound transition
prompted by the creation, after which it enters a waif point. In case of StateMachine Behaviors, a waif point is
represented by a stable state configuration. It remains thus until an Event stored in its event pool is dispatched,| This
Event is evaluated and, if it matches a valid Trigger of the StateMachine and there is at least one enabled Transition that
can be triggered by that Event occurrence, a single StateMachine step is executed. A step involves executing a
compound transition and terminating on a stable state configuration (i.e., the next wait point). This cycle then repeats
until either the StateMachine completes its Behavior or until it is asynchronously terminated by some external agent.

—and trace classification in interactions:

Clause 13, Common Behaviors, describes the general semantics of the execution of Behaviors. Interactions are kinds of
Behaviors that model emergent behaviors, as defined in sub clause 13.1. As discussed in sub clause 13.2.3, the
execution of a Behavior results in an execution trace. Such a trace is a sequence of event occurrences, which, in this
clause, will be denoted <el, e2, . . ., en>. Each event occurrence may also include information about the values of all
relevant objects at the point of time of its occurrence.

The semantics of an Interaction are expressed in terms of a pair [P, I], where P is the set of valid traces and I is the set of
invalid traces. P ! I need not be the whole universe of traces. Two Interactions are equivalent if their pairs of trace-sets
are equal. The semantics of each construct of an Interaction (such as the various kinds of CombinedFragments) are

= Mod

el In standard libraries.

21

Benefits: Classification Semantics

= Standard execution models for UML
— fUML, PSCS, PSSM

— Procedures that create a behavior occurrence
« Conforming to a UML model.

— Don’t tell whether
« An existing behavior occurrence conforms.
e Tools are producing correct occurrences

= Classification does the opposite

— Tells whether an existing behavior occurrence
conforms to a model.

— Doesn’t say how to create an occurrence.
— Execution engines are constraint solvers. 2

Overview

= RoadMap

= Motivation

= Behavior, review

= Activities, requirements
= Activities Solution

= Control nodes

= Loops

= Specialization
= Summary

23

Activity Problem

= UML has three ways to coordinate

sequences of behaviors:

— Activities have control nodes.

— State machines have pseudostates.

— Interactions have combined fragments.
= Very little integration or reuse.

— Three underlying metamodels.

— Three representations of “control”.

= Triples the effort of learning UML and
building analysis tools for It.

24

Activity Problem, Control

act TakePicture)

head
lgoahead] >[Shoot

sd TakePicture)

[Focus >

J > Reset
[abort]

- Controller - Camera

I I
i focus i
: >t
1 1
! !
alt ' '
1 1
[goahead] ghgot i
| >
1 1

e e e - -
1 1
1 1
[abort] i
' reset)i

Decision
Node
sm TakePicture) goahead]
> Shoot
[Focus H>
> Reset
[abort]
Choice

Pseudostate

\ Alternative
Combined Fragment

Activity Problem, Loops

act TakePicture)

sd TakePicture)
Focus >| Shoot l
/ - Controller - Camera

i i

1 1

\ loop) | !
Merge : i focus i
Node : >

1 1

1 h 1

sm TakePicture) : ulh >

1 1

1 1

A
\ Loop

Combined Fragment

Klmplicit 26
Junction

Activity Problem, Specialization

= Behaviors are classes in UML
— Their MO Instances are executions.

= Classes can be special/generalized
— Semantics = sub/supersets of MO instances
= Inheriting timing constraints
= Behaviors can special/generalized, but ...

= Generalization semantics not used.
— Nothing said in activities.
— SMs have syntactic redefinition rules.
— Interactions use trace semantics. 27

Activity Problem, Specialization

_ act TakePicture)
act TakePicture) lyes] Shoot

[Focus
A
Reset

[no]

7 5

act STakePicture) act STakePicture) [yes]

Shoot
B=

—>| Reset
[no] \

[ﬁmaybe] LStan d ByJ

= What can be added in specialized behaviors
and still obey inherited timing constraints?

Activity Requirements

= Single model & semantics for
coordinating sequences of behaviors

— Control nodes, loops.

= Use generalization semantics for
specializing behaviors.

— Subsets of occurrences / executions

29

Overview

= RoadMap

= Motivation

= Behavior, review

= Activities, requirements
= Activities Solution

= Control nodes

= Loops

= Specialization
= Summary

30

Connector Multiplicities

act TakePicture J

Focus

happens
Beforey, « *

Behavior Occurrence

!

/

/

)

AN
class TakePicture) step- Focus
happensBefore
stepl > step2
1 1 step2
,1\ ,1\ < Shoot

= Connector multiplicities constrain the
number of links due to a connector for
each value of the end properties.

31

Connector Multiplicities

Each value (occurrence) of Each value (occurrence) of
step2 must happenAfter stepl must happenBefore
exactly one value of stepl. 7 exactly one value of step?2.

class TakePicture)) \

A value 1 1

step2
(occurrence) stepl nappensetore) P A value
of step 1\ T (occurrence)
ﬂOT’ _~ of step 2
Red values
(occurrences) —> @
do not satisfy
connector ®

multiplicities

= Satisfying and not satisfying occurrences
—Valid / invalid
— Conforming / nonconforming, etc

32

Control Nodes (Fork)

act ForkEg)
step 2a
step 2b
class ForkEg) l//
L : tep2
Stepza
stepl happensBefore> P
happensBefore
step2b
//ll 1

= Same multiplicities, multiple connectogs

Connector Multiplicities (Fork)

Each value (occurrence) of stepl
must happenBefore exactly one

> step2a
stepl happensBefore™ | - g °
ed values
(occurrences) '<{
do not satisfy o~ :
connector [stepa
multiplicities \.
N
happensBefore \Q
1 1>'

Each value (occurrence) of step2a
and of step2b must happenAfter

34
exactly one value of stepl.

Fork Nodes, Graphic

class ForkEg)

1

> step2a
1 happensBefore
1 1
stepl > : NoOp
happensBefore
happensBefore
1 s > step2b
1

= NoOp Is a predefined behavior with
no steps and zero duration.
— Introduced for “node” appearance.

= Same effect as previous slide.

Control Nodes (Decision)

act TakePicture)

[Focus <>

> Shoot

>[Reset
class TakePicture) w

0..1
> step2a
1 happensBefore
1 1
stepl > : NoOp
happensBefore
1 happensBefore
> step2b
0..1

R—
= Connector multiplicities loosened
= What ensures that step2a/b happen at afl?

Decision Nodes, Closed, #1

act TakePicture)

{ xor goahead
abort }

]

[goahead] s shoot
[Focus)¢
> Reset
[abort]
class TakePicture)
[goahead] 0.1
> step2a
1 happensBefore
1 1
stepl > : NoOp
happensBefore
1 happensBefore
> step2b
[abort] 0.1 P

= Add guards where exactly one succeeds.

Decision Nodes, Closed, #1

class TakePicture)

{ if goahead S|ze() no-
{ if ~goahead isEmpty }

>size() }B‘

: 0..1

"

{ xor goahead

abort }

]

{ if abort size() = no->size() }

]

> sStep2a
happensBefore
1
1 1
stepl >1N0:NoOp
happensBefore = === - . :
1 I { if ~abort isEmpty }
ha:ppensBefore
= > step2b
0.1

= Guard conditions must be sufficient
to infer (require) connector values.

38

Decision Nodes, Closed, #2

act TakePicture)

[goahead]

> Shoot
[Focus L J
Reset
[abort] >
= > Standby
class TakePicture
) [goahead)] 0.1
1 > step2a
L 1 happensBefore
stepl > : NoOp
happensBefore 7 happensBefore
¢ 1 > step2b
{ let hb = happensBefore [abort] 0.1
xor hb->includes(step2a)
hb->includes(step2b) “appe“SBefOf; step2e
hb->includes(step2e) } 0.1 P

= Enumerate alternative branches
= Supports else (empty guard).

39

Decision Nodes, Open

class TakePicture)

0.1

> step2a
1 happensBefore
1 1
stepl > : NoOp
happensBefore
/’ 1 happensBefore
/ > step2b
/ 0..1

{ happensBefore->size() =1} Iﬁ

= Pro: Same for any number of branches.
= Con: Doesn’t require branches to happen.

40

Decision Guards, Open

act TakePicture) ond
oahea
9] > Shoot
[Focus]—)¢
> Reset
[abort]
class TakePicture) —— { if goahead size() = no->size() }
: { if ~goahead isEmpty }
| 0.1
> step2a
1 happensBefore
1
stepl ! > : NoOp fmmm o { if abort size() = no->size() }
happensBefore I {if ~abort isEmpty }
II 1 ha;ppensBefore
/ : > step2b
L 0..1
{ happensBefore->size() =1} I5'

= Sufficient constraints on connector values.

Decision Nodes, Open

act TakePicture)
[goahead]
Shoot
[Focus
Reset
[abort]
tandb
[else] Y
class TakePlcture) [goahead] 0.1
1 > step2a
happensBefore
1 1
stepl > : NoOp
happensBefore
1 happensBefore
, > step2b
J [abort] 0.1
{ happensBefore->size() =1} Bl happensBe @'
— ' step2e
[else] sd

= No else or empty guards

Control Nodes (Join)

act JoinEg)

[step la
step 1b

class JoinEg)

steplb

stepla 1 happensBefore
V1
happensBefore
NoOp >
1

step2

//1 happensBefore

= Reverse of fork

43

Control Nodes (Merge)

act TakePicture)

[stepla
?—)[step2]
Step2

class TakePlcture)[_
stepla 0.1 happensBefore
vl
: NoOp ! g step2
happensBefore
steplb 'T‘l
0.1 happensBefore
\) —
= What ensures each merge happens

due to exactly one previous step?

44

Merge Nodes, Closed

class TakePicture)

step2a

0.1

happensBefore

{ let ha = happensAfter
ha->includes(step2a) xor [~ ~| : NoOp
ha->includes(step2b) }

2

step2b

0..1

happensBefore

happensBefore

stepl

= Pro: Each merge will happen due to
exactly one of step2a or step2b.

= Con: Must be updated when branches

change.

45

Merge Nodes, Open, Not

class TakePicture)

0..1 happensBefore

step2a
V1
- >
: NoOp step2
happensBefore
1 -
step2b 1\
0.1 happensBefore ~.

{ happensAfter->size() =1} Bl

= Pro: Same for any number of alternatives.
= Con: Doesn’t require alternatives to happen

for merge to happen.
— No guards to give sufficient conditions.

46

Control Nodes (M1)

- Unless decisions
happens Behavior happens have behaviors
Standard Before L Occurrence <— During
. <
Model le(la;); ZF _- { happensDuring1={self} } Bl
NoOpOccurrence

N { happensBefore->includes(self) } Bl

= Could include control occurrences:

r T P 7T

Fork Join Merge Decision
Occ Occ Occ Occ

L -
- N

A

~
{ happensBefore1->size() = 1} Iﬁ { happensBefore->size()=1 }Iﬁ 47

Control Nodes (M2)

{ When isClosed = true, must have constraint

that happensBefores in which values Step
participate must have values of a controlled { Must must be typed by NoOpOccurrence.} Iﬁ
step at the other end. } le L
Y ,
AN Control Node

{ Outgoing succession source and
{ Outgoing succession source isClosed : Boolean = false target multiplicities = 1 and 0..1,
and target multiplicities = 1. }

%& 4& Z|& 4& respectively. }

~d Fork Join Merge || Decision
Node Node Node Node

and target multiplicities = 1. } ! \ y{ Must have constraint

/I \ happensBefore->size()=1. }

, isClosed=true \\
{ Incoming succession source j/ 7 A \ lj

{ Incoming succession source and
target multiplicities = 0..1 and 1,
respectively. }

{ Must have constraint
enumerating incoming steps. }
{ Must have constraint
happensAfter->size()=1. }

= Define M1 patterns
— Step type, connector multiplicities, M1 constraints.

Overview

» RoadMap

= Motivation

= Behavior, review

= Activities, requirements
= Activities Solution

= Control nodes

" Loops

= Specialization
= Summary

49

Loops

act TakePictures)

happens
Before

l*_ v

\A Behavior Occurrence [J
AN

class TakePictures)

1

1

stepl

happensBefore>

1

A~

appensBefore

step?2

gt

stepl

*

Focus

step2

*

= Multiple occurrences per step.j
— Also applies to event-driven and
streaming behaviors.

Shoot

50

Multiple Occurrences (#1)

Due to
connector

class TakePictures)

1

1

1

happensBefore1> step2

happensBefore

happensBefore

= happensBefore Is transitive ...

— but links inferred this way are not due to
connectors, and are not counted In

connector multiplicities.

51

Multiple Occurrences (#1)

class TakePictures)

Due to
(value of) —
connector

hb-1-2 : HappensBefore

1) 1
\& happensBefore| step2
happensBefore
1

happensBefore

1 ! 1

hb-2-1 : HappensBefore

= Connectors ...
— Are properties typed by associations.
—Values are links due to connector (counted,
by connector multiplicities).

Multiple Occurrences (#2)

class TakePictures)
hb-1-2 : DirectHappensBefore
j 1 Behavior
1 ' Occurrence
stepl dHappensBefore| step2 — -
dH B I happensBefore
appensBefore \ A
1
=== = Happens {SUbSGtS}
Before
dHappensBefore D Direct
< . HappensBefore
1 : 1 * *
_ ' | dHappensBefore
hb-2-1 : DirectHappensBefore

= Connectors typed by intransitive (“direct”)

happens before
— Implies (transitive) happens before
— But not vice-versa.

Overview

» RoadMap

= Motivation

= Behavior, review

= Activities, requirements
= Activities Solution

= Control nodes

= Loops

= Specialization
= Summary

54

Specialization (Add’l Steps)

act TakePicture) class TakePicture)

happensBefore

act STakePicture) class STakePicture)
happens happens
Before Before
Focus SetWB stepl ﬁ stepl.5 ﬁ step2

= Do additional steps in specialized behaviors

follow generalization semantics?
— Sub/supersets of MO instances
— Inheriting timing constraints >

Additional Steps

class TakePicture)
) >
stepl happensBefore| Step2

@ happensBefore >@

class STakePicture)

1 1
happensBefore

1 %‘ 1 1

happensBefore Stepl'S happensBefore

happensBefore >@ happensBefore >

v happensBefore

= Specialized behaviors can have additional steps
= Executions of STakePicture perform stepl and steps2
= Multiplicities satisfied on connectors separately

Specialization (Add’l Branches)

act TakePicture) iyes]

Shoot

TakePicture

happensBefore
> step2a
Focus >| - NoOp 1 [yes] 0.1
) 0.1
Reset 1 0o > step2b
[no] happensBefore
act STakePicture) STakePicture
[yes]
Shoot
Focus "happensBefor; "Step2a
5 1 Nyes] 0.1
——>| Reset A NoO A[no] 0-; ~stenzh
[no] - NOVP Iy ~happensBefore P
%rSt dB | maybe] 7S step2c
[maybe] L an yJ 1 happensBefore

= Do additional control node branches In
specialized behaviors follow
generalization semantics?

S7

Additional Branches (Fork)

ForkEg
happensBefore
S| step2a
h 1 1
appensBefore
stepl > :NoOp |, 1
1 1 >| step2b
happensBefore
SpecialForkEg
"happensBefore
> Nstep2a
ha 1 1
ppensBefore
"stepl 1 1
1 1] A: Nstep2b
- NoOp ’\happensBeforz P
1 1
> step2c
happensBefore

= Specialized behavoirs can have add’l fork
Executions of SpecialForkEg perform step2a and st%pr

-

after each fork.

branches

Additional Branches (Decision)

Yes, If ...

_—~—

{ happensBefore->size() =1} I;

DecisionEg
A happensBefore
appens > step2Za
Before 1 [goahead] o7
stepl p——> .
1 1 Nnooo P labor] 3] step2b
] - NOUp happensBefore P
- step2e
happensBefoz P

ZF

SpecialDecisionEg

Nstepl

"happensBefore

“happens Astep2a
Before 1 Ngoahead] ¢.1
A2 NoOp > "step2b
1 ~happensBefore
standby] 0.
[J] Astep2e

1 happensBefore

= Generalized behavior is open.
= Specialized (leaf) behavior is closed (#1 used above)

= Generalized guards can all fail, some can be empty so
= No reasoning based on aeneralized behavior

\

{ xor goahead
abort standby }

Additional Branches (Decision)

DecisionEg
happensBefore
happens step2a
Before 1 [goahead] >
0.1
stepl p————>
1 1 1 [abort] 0.1 sten2b
| ' NoOp happensBefore P
I 1 0.1
- - — S| step2e
{ happensBefore->size() = 1 } % TopememE
SpecialDecisionEg
~happens ~happensBefore Astep2a
Before 1 Ngoahead] ¢.1
Nstepl p———m—>
1 1 Nabort] 0.1 N
A NoOp |- > "step2b
N "happensBefore
{ let hb = happensBefore Y .1 0.1
_ xor hb->includes(step2a) [> Astep2e
YES If hb->includes(step2b) 1 happensBefore
’ e hb->includes(step2e) }

e

= Generalized behavior is open.

= Specialized (leaf) behavior is closed (#2 above, else)
= Generalized guards can all fail, some can be empty oo
= No reasoning based on aeneralization behavior

Additional Branches (Join)

JoinEg
stepla happensBefore
1 1 happensBefore
L 1| : NoOp > step?2
steplb 1 1
happensBefore

T

SpecialJoinEg

Astepla "happensBefor?

1 AhappensBefore

> “step2

N 1 § N - 1 1
steplb : NoOp

“happensBefore

1 1
steplc >

happensBefore

= Specialized behaviors can have add’l join branches

— Executions of SpecialForkEg perform stepla and steplb
\/ . 6
before each join.

Additional Branches (Merge)

MergeEg
stepla: happensBefore .
P 0.1 ? happensBefore step2.
01 | - NoOp [1 >
steplb : > \
happensBefore N
4 { happensBeforel->size()=1} BI_
SpecialMergeEg
“happensBefore
Nstepla: _
P 0.1 1 AhappensBefor;’\stepZ :
1
Astepilb : = > A NoOp | 2 1
“happensBefore
teplc : 0.1 1 \\.{Iet ha = happensAfter A
] steplc . happensBefore xor h_a->inc|udes(step2a)
YeS |f ‘e ha->includes(step2b)
_~ ’ ha->includes(step2c) }

= Generalized behavior is open.
= Specialized behavior is closed
= No reasoning based on generalized behavior s

Activity TBD

= Regions
— Interruptable
— Expansion
= Object Nodes / Flows
— Queuing
— Weight
= Exceptions

63

Overview

» RoadMap

= Motivation

= Behavior, review

= Activities, requirements
= Activities Solution

= Control nodes

= Loops

= Specialization
= Summary

64

Summary

= Sequences of behaviors coordinated by:
— Multiplicities on HappensBefore connectors.

— Additional constraints for sufficiency or closure
INn some cases.

— NoOp steps (control nodes) and metamodel.

— HappensBefore connectors specifying links
 Only due to connector multiplicities or
e Intransitive (“direct”) HappensBefore

= Generalization for specializing behaviors by:
— Multiplicities on HappensBefore connectors.
— Specialize open control nodes to close them.,

More Information

Intro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

Interaction as Composite Structure
— http://doc.omg.org/ad/18-06-11

Object-orientation as Composite Structure
— http://doc.omg.org/ad/18-09-07

State Machines as Composite Structure, Parts 1&2
— http://doc.omg.org/ad/18-12-09, http://doc.omg.org/ad/19-03-02

Earlier slides (more onto, includes interactions)

— http://Iconradbock.org/bock-ontological-behavior-modeling-ipl-
slides.pdf

Paper: http://dx.doi.org/10.5381/j0t.2011.10.1.a3
Application to BPMN: http:/conradbock.org/#BPDM
KerML/SysML2: Contact Chas Galey charles.e.galey@mco.com

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://doc.omg.org/ad/18-12-09
http://doc.omg.org/ad/19-03-02
http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
http://conradbock.org/#BPDM
mailto:charles.e.galey@lmco.com

	Activities as Composite Structure:�(Onto) Logical Activity Modeling
	Overview
	Overview
	Behavior as Composite Structure Presentation Stack

	Motivation, Behavior review
	Original Problem
	General Solution
	Behavior as Composition
	Behaviors as Composite Structure
	Behavior as Timing Constraints
	Behavior as Timing Constraints
	Behavior as “Composite Timing”
	Behavior as “Composite Timing”

	Onto Behavior Modeling
	Model and Things Being Modeled
	M0  M1 Synonyms
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Behavior: Too repetitive at M1?

	Benefits
	Benefits: Original Problem
	Benefits: Expressiveness
	Benefits: Expressiveness
	Benefits: Modeled Semantics
	Classification Semantics

	Activities, requirements
	Activity Problem
	Activity Problem, Control
	Activity Problem, Loops
	Activity Problem, Specialization
	Activity Problem, Specialization
	Activity Requirements

	Activities Solution
	Connector Multiplicities
	Connector Multiplicities
	Connector Multiplicities

	Control Nodes
	Fork
	Connector Multiplicities (Fork)
	Fork Nodes, Graphic

	Decision
	Closed
	Decision Nodes, Closed, #1
	Decision Nodes, Closed, #1
	Decision Nodes, Closed, #2

	Open
	Decision Nodes, Open
	Decision Guards, Open
	Decision Nodes, Open

	Join
	Merge
	Merge Nodes, Closed
	Open, Not

	Model Library
	Metamodel

	Loops
	Loops
	Multiple Occurrences (#1)
	Multiple Occurrences (#1)
	Multiple Occurrences (#2)

	Specialization
	Additional Steps
	Additional Steps?
	Additional Steps, Occurrences

	Additional Branches
	Additional Branches?
	Fork
	Decision, Closure #1
	Decision, Closure #2
	Join
	Merge

	Activity TBD
	Summary
	More Information

