engineering

]
[]
. i

Ioleloge|

4D Composite Structure:
(Onto) Logical 4D Modeling

Conrad Bock
U.S. National Institute of Standards and Technology

Charles Galey
Lockheed

NIST

Motienal Institute of Standards and Technology

Overview

= RoadMap

= Motivation

— Behavior, review

— 4D, requirements
= 4D Solution

Objects and behaviors

1. In space-time

2. within time intervals, space regions
= Summary

Overview

= RoadMap

= Motivation

— Behavior, review

— 4D, requirements
= 4D Solution

Objects and behaviors

1. In space-time

2. within time intervals, space regions
" Summary

Behavior as Composite Structure

Onto 4D
(this one)

Onto Activities
(ad/19-06-02)

Onto State Machines, Parts 1 & 2
(ad/18-12-09, 19-03-02)

Onto OO
(ad/18-09-07)

Onto Interactions
(ad/18-06-11)

Onto Behavior Basics
(ad/2018-03-02)

Overview

= RoadMap

= Motivation

— Behavior, review

— 4D, requirements
= 4D Solution

Objects and behaviors

1. In space-time

2. within time intervals, space regions
" Summary

Original Problem

= UML has three behavior diagrams.
— Activity, state, interaction.
= Very little integration or reuse between
them.
— Three underlying metamodels.
— Three representations of temporal order.

= Triples the effort of learning UML and
building analysis tools for It.

General Solution

= Treat behaviors as assemblies of
other behaviors.

— Like objects are assemblies of other
objects.

= Assembly = UML internal structure
— Pleces represented by properties.
— Put together by connectors.

= Put all behavior diagrams on the
same underlying behavior assembly
model.

Behaviors as Composite Structure

act PreventLockup [Activity Diagram])

Property

Property | ™~ __ _ __

\9 : o ke
— _TraiLusi — dl:Tractfj m1:Brake
Detectr Modulator
j
Connector - m

detTrkLos()

sd ABS_ActivafonSequence [Sequence Diagram])

Activity I<:|
P r O p e rty \ sendSignal()

modBrkFrc(traction_signal:boolean)g
stm TireTractic)\[State Diagram]|) >

modBrkFrc()

\1, (—LossOfTractionﬂl
sendAck()
Gripping] [Slipping] <

LRegainTraction—) Interaction
i/

Connector / State Machine Connector

-

Behavior as Timing Constraints

4 . N
TakePicture

Model
. J

| Happens before
Things Behavior — - Ve
Being Focus T |—|(S ,,,, i
Modeled Shoot T §\ — ,£ —
(MO) Take Picture + | S 8 l /’l l

\‘\ /")
Happens during Time

= Behaviors model “things” happening over time.
— With temporal relations (time constraints) between them.

Behavior as Timing Constraints

4 . N
TakePicture

Model
Things Behavior
zeing ocus il am
Modeled Shoot T (‘ — —)
(MO) Take Picture + | : | :
>
Time

= The TakePicture occurrence on the right does

not follow the behavior model.

10

Behavior as “Composite Timing”

(])
Part-whole ._| TakePicture Part-part
Model N /

Things Behavior 7 Part—Bart
Being Focus T I_Ik """ I_I/'/
Modeled Shoot T é\ — ,4 —
(MO) Take Picture 4 f—— : // : :
\\ //)
Part-whole fime

= Composite structure relations are temporal:
— Part-whole = happens during.

11
— Part-part = happens before.

Behavior as “Composite Timing”

Model class TakePicture J stepl
(M1) > Focus
—>| stepl: Focus

Property/ zmensBefore

(whole-part) _——>>|: HappensBefore
step2
Connector step2 : Shoot <> Shoot
(part-part)
Things Not instance specs
Being TakingPic1l: TakingPic2:
Modeled
(MO)
stepl | :Happens _|step2 stepl | :Happens _|Step2
Focusing | Before | Shooting Focusing | Before | shooting

DuringTP1: /t\ DuringTP1:| |DuringTP2: /I\ DuringTP2:

Focusing before shooting in same taking picture *

Model and Things Being Modeled

(TakePicture
Model
_ ¢ /=\)
Things Behavior ',: '\‘
Being Focus T b— o B
Modeled Shoot + Q g|_| :"’ \‘ Q‘sl_l
(MO) Take Picture + | }' \. |
>
Time

= Dashed arrows between M1 and MO
mean 13

MO - M1 Synonyms

rTakePictu re

Classified by e w

Modeled by ~ A
Specified by | ™
Th?ngs Behavior 1 - :: ‘.‘ L
Conforms to 2on9 Al g Gy / gg,_l
(MO) R (\
FOIIOWS ake Picture | | | 5
Time

Satisfies (logically)

Not quite: Instance of (in the OO sense)
Not at all : Execution of (in the software sens®)

Behavior: What’s Being Modeled?

Real,

Simulated, Focus

or Desired 3/15/09 10-11pmET :
Things Being ———

akePicture
Modeled (MO) 3/15/09 10-12pmET :
Shoot
Not instance 3/15/0911-12pmET :

specs.

= “Things” that occur in time
— Eg, taking a picture, focusing, etc.
— Not “behaviors”, “actions”, etc.

15

Behavior: What’'s in Common?

Standard .
Model Library § "appens Behavior happens
Before Occurrence During-t
o A
| 1
| I
| |
I happens
BN Focus
Things Being TakePicture 3/15/09 10-11pmET :
Modeled (MO) 3/15/09 10-12pmET : happe”SBefore\l,
> Shoot
happens| 3/15/0911-12pmET :

During-!

* They happen before or during each

other.
— Construct M1 library for this.
— Use it to classify things being modeled.

Behavior: Use Library

Standard .
Model Librar happens Behavior happens
y Before Occurrence During
(M1) A A
{subsets}
System TakePicture
Model < : HappensBefore
(M1) stepl: Focus >|step2: Shoot
>
“ A\ //
| /
| |
|
b — 1} Focus
Things Being kePicture N ! 3/15/09812-11meT:
Modeled (MO) 3/15/09 10-12pmET : AN - apReEls eore\l,
step
Shoot
3/15/0911-12pmET :

= Specialize library classes and
subset/redefine library properties.

Behavior: Too repetitive at M1?

type
l \l/‘ype Association él gwnedt
d onnector
Metamodel Property role
(M2) Class ‘_ZP Property ? Connector
{redefines}
4 ownedStep 4 fromStep 4
Behavior ; Step Succession
- toStep
A - A
1 / "
System J/ TakePicture
Model L : HappensBefore 7
stepl: Focus “>istep2: Shoot
(M1)
7
A ~
: I
: : \ stepl
Things Being v > 3/15/09F(1)ocijlS ET
\ -11pm .
Modeled (MO) TakePicture AR HappensBefore\l/
3/15/09 10-12pmET : Nten2
step
> Shoot
3/15/0911-12pmET :

= Capture M1 patterns in M2 elements.
— Tools apply patterns automatically.

8

Benefits: Original Problem

= Flexibility in using metamodels

— Add metaelements as needed to simplify
library usage.

= Many metaelements become synonyms

— Application / method / diagram-specific
terminology sharing same semantics.

— M2 actions, states, etc, => M1 happensDuring
= Learning UML and building analysis tools
for It Is easler

— Due to shared semantics for variety of
modeling language terminology.

Benefits: Expressiveness

Model Focus |Q— MultiFocus
(M1) rTakePicture) TakeSpecialPicture
<]— Multi
o oo 1o
A v‘~\ /?\
I = Sso i
Behavior |, ____. T W R S— X
] 1] 1
Things Log —
Being Shoot (7|—| — —
Modeled Focus — g\
“~HappensBefore
(MO) MultiFocus (\ — PP
\\
Take Picture | | —x |} l
\‘\\ .)
HappensDuring Time

= Constraints are inherited in UML
— Including temporal constraints.

20

Benefits: Expressiveness

Event \

fTakePicture \I)

button
Press
Focus] Shoot O
: Exposure ,\ : Exposure
\ _J

\ Object flow

= Combine activity and state machines.

— States and actions happen during their
“containing” occurrences, ordered in time,,

Benefits: Modeled Semantics

= UML semantics Is written in free text

— Specifying an execution procedure for
activities and state machines:

Tokens are offered to an ActivityEdge by the source ActivityNode of the edge. Offers propagate through ActivityEdges
and ControlNodes, according to the rules associated with ActivityEdges (see below) and each kind of ControlNode (see
sub clause 15.3) until they reach an ObjectNode (for object tokens) or an ExecutableNode (for control tokens and some
object tokens as specified by modelers, see ObjectNodes in sub clause 15.4). Each kind of ObjectNode (see sub clause

15.4) an
accepte,
Activity]
which a

The processing of Event occurrences by a StateMachine execution conforms to the general semantics defined in Clause
13. Upon creation, a StateMachine will perform its initialization during which it executes an initial compound transition
prompted by the creation, after which it enters a wait point. In case of StateMachine Behaviors, a wait point is
represented by a stable state configuration. It remains thus until an Event stored in its event pool is dispatched, This
Event is evaluated and, if it matches a valid Trigger of the StateMachine and there is at least one enabled Transition that
can be triggered by that Event occurrence, a single StateMachine szep is executed. A step involves executing a
compound transition and terminating on a stable state configuration (i.e., the next wait point). This cycle then repeats
until either the StateMachine completes its Behavior or until it is asynchronously terminated by some external agent.

—and trace classification In interactions:

Clause 13, Common Behaviors, describes the general semantics of the execution of Behaviors. Interactions are kinds of
Behaviors that model emergent behaviors, as defined in sub clause 13.1. As discussed in sub clause 13.2.3, the
execution of a Behavior results in an execution trace. Such a trace is a sequence of event occurrences, which, in this
clause. will be denoted <el, e2. en>. Each event occurrence may also include information about the values of all
relevant objects at the point of time of its occurrence.

The semantics of an Interaction are expressed in terms of a pair [P, I], where P is the set of valid traces and 1 is the set of
invalid traces. P ! I need not be the whole universe of traces. Two Interactions are equivalent if their pairs of trace-sets
are equal. The semantics of each construct of an Interaction (such as the various kinds of CombinedFragments) are

-

= Mod

el In standard libraries.

22

Benefits: Classification Semantics

= Standard execution models for UML umL, etc)
— Procedures that create a behavior occurrence
e« Conforming to a UML model.

— Don’t tell whether
 An existing behavior occurrence conforms.
e Tools are producing correct occurrences

= Classification does the opposite
— Tells whether an existing behavior occurrence
conforms to a model.

— Doesn’t say how to create an occurrence.
 Execution engines and reasoners do this.

— Enables semantic conformance testing. 2

Overview

= RoadMap

= Motivation

— Behavior, review

— 4D, requirements
= 4D Solution

Objects and behaviors

1. In space-time

2. within time intervals, space regions
" Summary

24

“3D/4D” Modeling Defined

“3D” = objects at an instant in time.
— But no particular one (the “current” one).

“4D” = objects as single entities
extending over time.

— Can be “sliced” up into intervals,
including instants.

Not actually about physical space.
— Includes behaviors treated like objects.
— Better name: Snap / Span (Smith).

25

“3D” (Snap)

John’s car

= Object “repeated” over time.

26

“4D” (Span)

Time

>

\f
BBBBB
Repaired

4D (space-time)

(D] [—
O G
F
(o] .
o
. .
s
p
B
B
B
-
John’s car gggggggggw o .
“““““““““ ' Time

>

= An object “moves through” time In
the same way as space.

— Horizontal = car Is stationary

Adapted from Matthew West, Developing High Quality Data Models, Morgan Kaufmann, 2011.

“3D/4D” / 4D Compared

= “4D” Is more general than “3D".

—“4D” covers all instants in an object
lifetime, including the “current” one.
= “3D” can’t easily model:

— Characteristics of objects over some of
their lifetimes (including particular instants).

— Can’t aggregate over time (eg, number of
owners a car has had).
= 4D Is more general than “4D”
— 4D Includes space.

29

UML: Not much “4D”

= |nstance specifications
—“Snapshots” can’t be related to same instance.
— Don’t represent any particular instance, or any.

= State Invariants
— State machines and interactions.
« On SM state or interaction fragment

— Left to constraint language.
 Holds for duration of state or interaction fragement

— Can’t aggregate over time.

— SM and interaction models aren’t related.
e Just happen to have the same name. 30

4D Requirements

1. Treat objects and behaviors as existing
In time and space together.

— Behaviors in space of objects involved Iin
them.

2. Specify objects and behaviors over
— (Sub) intervals of time and regions of space.

31

Overview

4D Solution

Objects and behaviors
1. In space-time

2.

32

Without and Within

A . .
Q Inside
@ of
o
n
outside
OV
j\appe ns
before happens
during
Time >
\) \)
Y Y
without within

= Completely separate or overlapping
— Different dimensions (time, space) and terms.
— Same thing (without, within).

Without and Within (M1)

Standard
Model Library
(M1)

without
AN

>

happens
Before

outsideOf

Occurrence

insideOf
AN

happens

During
?ﬁ-
&——

within

= Without = happensBefore or outsideOf or both

= Within = Both happensDuring and insideOf

37

Object & Behavior Terms

Standard
Model
Library
(M1)

happens
Before

happens
During

inside outside
Qf Qf

T Occurrence T T

exists exists A A happens happens
Before When Where Elsewhere
Object Behavior
Occurrence Occurrence

= Objects and behaviors might have
different names for 4D relations

— But the meaning is the same.

38

Overview

= RoadMap

= Motivation

— Behavior, review

— 4D, requirements
= 4D Solution

Objects and behaviors

1. In space-time

2. within time intervals, space regions
= Summary

39

Time Slices

Space Slices

Space

John’s
engine{

Spaces |n{:

John’s car ¢==1 \\ .

John's €
wheels

= All time In 4D region during (relative) space
Intervals. "

Composition (Integral)

Wholes and parts are
different kinds of things
(cars and wheels)

Can take parts out

(and put them back

= Composite aggregation (“black diamond”)

42

Composition (Portional)

LN Wholes and portions are
the same kinds of things
(bread)
Can’t take parts out

and put them back in \

= Same applies to slicing 4D things.
= New notation: eo——>

Winston, M., R. Chaffin, and D. Herrmann, “A Taxonomy of Part-Whole Relations,” Cognitive Science 11: 417-444, 1987.
Odell, J. 1994. “Six Kinds of Composition.” Journal of Object-Oriented Programming 5: 8, 1994.

43

Portions (M1)

within

e

within-t
I
Standard

@

Model Library 0O portion
(Ml) ccurrence ¢ [F JAN

timeSlice

b

spaceSlice

= Portions are completely within their wholes.
= Time and space slices are portions

44

Time Slices (M1)

Standard Occurrence
model library —>
happens 7& timeSlice
Before A
Model ?
Car
(M 1) parked
structure
*
L _J
System - parked : 00—
model
happensBeforel Md
L _J
operated : i
A
!
John’'s Vehicle
parked (Parked)
Jan 5-6, 2015, 7pm-8amET
(MO) Vehicle \L
May 15, 2007 — happensBefore
Sep 12, 2016 John’s Vehicle
operated (Operated)
Jan 6, 2015, 8-8:30amET
: Car

Time slices
of cars are
also cars

(could be
subtypes)

45

Time Slices (M2)

I‘ owned} ey
attribute g y
Metamodel Cl PR owned| Occurrence
(M2) ass Occurrence] Property
Property 4
owned|] OState
X I‘ Ostate|] Property
Propert
. PEYTA
' !
dST"JI‘_”bdard Occurrence |
model library
haé)gf%rz?& timeSlice ,I'
BT !
Model ~ R
(M1) car Cieda”
structure ph /
o * /
System parked : 00— !
model «ostate»//
happensBefore @Owd
operated:“
|l ' 47

4D, Multi-object

Iear

\\\\\

1
©
©
O
x
- /5
John’s car
|
]
\ I

= Car should only be in road when it’s clear.

Moving ~ , Y
;;;;;;;

eeeeeeee

4D, Multi-object (M1)

Portion of
CarOperatingEnvironme rOaC_I Whe_l'e
structure Car IS gOIng.
vehicle : Arf’:ég path :
structure structure

<<ostqte>> happens «OTtate»
moving During Clear
?I/\'/l(’f;e' Cars can move

only when path
Veh,de lpath ahead is clear.

A Road
«ostate» 1 without «ostate»
moving T clear
Parked Car _ Cars can’t park

«OoState»
in the road.

parked

50

Snapshots

/

e

Zero “thickness”
— time slices.

o

.
A

Time

>

= Times slices with zero duration.

Snapshots (M1)

happens Occurrence happens
Before <— During-
Standard > r— loo— &
Model Librar snapShot
y <
(M1) - - tlmeSI|cl§
J |
happensBefore,
selfLink <——
snapShot

= Snapshots happen before themselves.
— They “meet” at beginning and end.

52

Start/Endshots

~ v
Y & End of
S a X AR
A T oD & o !
. SESE S8 5F [z~ John’s car.
@ g3 o0
o o Q
) w
Start of — && N\
John’s car

John’s car

Tir&e

= Snapshots at beginning and end of
4D occurrences (including slices). s

Start/Endshots (M1)

Occurrence POR
> - <—
Standard happens snapshot snapShot
Model Library Before T Zr
(M1) happensBefore endShot
1 \l/ |1 él T
L L
startShot endShot < startShot
1

= Start/Endshots happen before/after
all snapshots.

Object Terms,
Behavior Specializations

*8 Occurrence
S| Standard
JAN hot i
startS 0} Model Library
A\ endShot S | (M1)
{redefines} 4 4
Obj et Occurrence _Blehavior Occurrence

1
createShot|: ObjectOccurrence normalEn|] : BehaviorOccurrence [O..l]dl—
destroyShot : ObjectOccurrence| | success :|BehaviorOccurrence [0..1]

failure : BlzhaviorOccurrence [0..1] I
abnormalEnd : BehaviorOccurrence [0..1]
abort : BehaviorOccurrence [0..1]

error : BehaviorOccurrence [0..1] :

= Objects might have different names for
start and end

— But the meaning is the same.
= Behaviors might specialize for end status

{s1osqns} {s1esqns}

Link Occurrences

Space
YV
.
//%

car-engine link #1 € §\\
A \

Q

Q

\
\\ Links between
S N\ \\ hns car and
\\\\ A\ \\\\\\\

: D \
Engine \,\\\\\\\\g \\\\

\\\\\\\\\\\

(
|
|
|

H—

car-engine link #2

Time

>

wo links between John’s car
— One before engine Is removed and one after.

56

Links (M1 & M2)

owned
Property
Class |[® n
Metamodel . {r Property
(MZ) : A e |‘ participant
| ssocilation Property
I N N
| | o e — — ,,',,' ______ >
- l I =======
Q //I;, M1 property at tail of
participant [2..¥] Link arrow is value of M2
{non-unique} property at head of
Standard Anvihi < ”|1|e arrow. s
Model Library nytning soulce [1 4 ot instance links
target [1] O\ BinaryLink
Model < ’

1) ; 7 :

System _ -7 Engine Powers
Model linked(lam : Camera

-~
: Car ImkedCon Controller
-

|

] |

L |

linkedCam) '

Instances . Camera |e—— | Link 251: —"”kedcc’; : Controller |,
(MO)

Link Occurrences (M1)

s <l
happens 4 i * -
During<“ Ri‘ﬂﬁﬂqﬁ?}m [2-7] Link
Sta_ndard < Occurrence ZP
Model Library source [1]
?rget 1 A BinaryLink

- 45 JAN ZF

Engine | Powers
Model System < —! o
~==| | pSource : Car
(Ml) model pTarget : Engine [1]
Car [€ =
[
= A |
[1
: 5/1/5/2007-6/23/2010 :
1 \]/pTarget ; lpSource
Instances _ : >
John’s Vehicle 5/1/5/2007-9/12/2016 :
(M O) 5/1/5/2007-9/12/2016 : ; > Engine
pTargetA ! ApSource

6/28/5/2010-9/12/2016 :
Powers

Transfers (M1)

Behavior . D
Occurrence < invo Ve;
Standard 4 ZP *
Model Library __[|target [1J> Occurrence
source [1;
Transfer
Model item
(M1) >
= 4 {redefines} [1“] A ¢ ¢
item [|
System Model < Product Transfer >| Product | I :
I
= AN ’:‘ I I
1 1 } }
| item 1 | |
—>| Stove234: : :
Instances Product Transfer source . :
(MO) 3/15/09 10-12pmET : >| Store6s4: |
target '
> John’sHouse:

60

Transfers as Links (M1)

source [1]
BinaryLink A\ target [1]
Standard - ZF >
Model Library 4 a1
arge [;]. Occurrence
source [1&
Model Transfer
M1 item
(M1) [1?
AN AN
4 {redefines} A | I
System item I I
Model T Product Transfer S| Product I I
| 1
A ':‘ | I
I 1 i 1
L item 1 ' I
>| Stove234: : :
Instances Product Transfer source Store65A:' ;
(MO) 3/15/09 10-12pmET : . I
target 1
> John'sHouse:

61

Transfers (M2)

owned
Propert
> lrp L Property Class
{subsets}
Metamodel . s
Class | A C t > A iati
(M2) lll =] Connector ssocilation
{subsets} ;
ow?ed 4 o 4
F :
<> OV\i Flow —>| Interaction
A
|
System DeliverProduct :
Model _ pt : ProductTransfer ,I
pickupFrom : >| deliverTo :
(M1) A
A I
i |
' pick!pFrom
“ S| Store654:
Instances :
Product Delivery del\erT , _ _
(MO) 3/15/09 9-1pmET - N > John’sHouse: Stove234.

\

V2

Product Transfer

3/15/09 10-12pmET :

1\ item

62

Transfers & 1/0O (M2)

Connector itemType
[1..*] {ordered, Class
Flow 4_ non-unique}
ltem sourceOutputPropert
7N
1..*] {ordered,
Metamodel Flow / 1.1 (ordered, Property
(|\/|2) I
W t%getlnputProperty
/ \ [1..*] {ordered,
/i \ non-unique}
I \
i \
/
= \- — =======
Model Té/v/,\ePlcture\\\Actlvny M1 property at tail of
(|\/|1) _ _ = N _ arrow is value of M2
stepl ./f%;us S step2 : Shoot property at head of
out xrsl ZExposure Exposure “SSin xfs: Exposure the arrow.
Not instance links
A
]
TakePicture 3/15/09 10-12pmET :
Instances ist_eu st_e@i
(MO) Focus Occ 1: -ExposureTransfer | ghpot Ocg 1 :
out xrsl = Exp123 s in xfs = Exp123

63

Transfer & I/O Semantics

1. Transferred item = value of
—source output property when transfer starts.
—transfer item property during transfer.
—target input property when transfer ends.

2. Transfer might:

—remove item from source output property
when it starts (isMove).

— start when item is added to source output
property (iIsPush)

— have zero duration (isInstant)

64

Transfer & 1/O Semantics (#1)

Connector typed

Connector typed

by source output Behavior | | Binary by target input
association OCC”Z;ence ngk association
(on specialization or item rovN (on specialization or item flow)
— ; Transfer \L
L «isHfficient» «isYUfficient»
go) . _
O ~ I R kR W et e e T
5= SOUCE T oay ftem ST @ et
E 2‘ happensDuring 1..* happensDuring
-g S happenlsDuring
@® o Py
0 ﬁ startShot ~self endShot
item = | o ot
_ source output Item target mput
value of: property when property property when

transfer starts during

transfer

transfer ends
65

Transfer & I/0O Semantics (#2)

Transfer

iIsMove : Boolean = true {readonly}

IsPush : Boolean =true {readonly}

iIsinstant : Boolean = true {readonly}

- - «issufficient» «isSufficient» T —
D :_ 1.: : BinaryLink :_ _ 1..*.: : BinaryLink I 1!
S | source = , > item € : - target !
O o~ ===== a : 1..* e e e - - 1.* : I o e e
= J | |
o < sourceOutputLink [1..4] targetinputLink [1..]
S >
O (q0) o L o
% — startShot endShot startShot
o2
h | | |
happens happens__.{ isMove } |ﬁ happens Transfer ends
_-* While While While when item is
(isPush 1Y _lo.1 0.1] ik A added to
* ' o .
startShot] endShot target input
{ isInstant } S |

Remove item from Start transfer when Transfer has
source output when item is added to zero duration 66
transfer starts source output

4D TBD

= More about space
= Formalize slicing

= Quantification
— Units

67

Overview

= RoadMap

= Motivation

— Behavior, review

— 4D, requirements
= 4D Solution

Objects and behaviors

1. In space-time

2. within time intervals, space regions
= Summary

68

Summary

Unify objects and behaviors as occurrences
—occupying regions of space-time.

Unify spatial and temporal relations as
—relations between regions of space-time.

Introduce portion composition

— Specia
— Specia
— Specia

ize for slices of time and space
Ize time slices for snapshots.
ized snapshots for start and end shots.

Treat links as occurrences
— Apply to model item flow semantics. 69

Past ADTF Intro Slides

Intro to Behavior as Composite Structure
— http://doc.omg.org/ad/2018-03-02

Interactions: http://doc.omg.org/ad/18-06-11

Object-orientation: http://doc.omg.org/ad/18-09-07

State Machines, parts 1&2:

— http://doc.omqg.org/ad/18-12-09
— http://doc.omqg.org/ad/19-03-02

Activities, part 2: http://doc.omg.org/ad/19-06-02

60

http://doc.omg.org/ad/2018-03-02
http://doc.omg.org/ad/18-06-11
http://doc.omg.org/ad/18-09-07
http://doc.omg.org/ad/18-12-09
http://doc.omg.org/ad/19-03-02
http://doc.omg.org/ad/19-06-02
http://doc.omg.org/ad/19-09-07

More Information

= Earlier slides (more onto)

— http://conradbock.org/bock-ontological-behavior-modeling-jpl-
slides.pdf

= Papers:
— Ontological Behavior Modeling:
http://dx.doi.org/10.5381/j0t.2011.10.1.a3

— Ontological Product Modeling:

https://tsapps.nist.qgov/publication/get pdf.cfm?pub id=
822748

— 4D Requirements Modeling:

https://tsapps.nist.qgov/publication/get pdf.cfim?pub id=
919164

= Application to BPMN:
http://conradbock.org/#BPDM

= SYysML2: Contact Bjorn Cole bjorn.f.cole@mco.com

61

http://conradbock.org/bock-ontological-behavior-modeling-jpl-slides.pdf
http://dx.doi.org/10.5381/jot.2011.10.1.a3
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822748
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919164
http://conradbock.org/#BPDM
mailto:bjorn.f.cole@lmco.com

	4D Composite Structure:�(Onto) Logical 4D Modeling
	Overview
	Behavior, review
	Original Problem
	General Solution
	Behaviors as Composite Structure
	Behavior as Timing Constraints
	Behavior as Timing Constraints
	Behavior as “Composite Timing”
	Behavior as “Composite Timing”

	Model and Things Being Modeled
	M0  M1 Synonyms

	Onto Method
	Behavior: What’s Being Modeled?
	Behavior: What’s in Common?
	Behavior: Use Library
	Too repetitive at M1?

	Benefits
	Original Problem
	Expressiveness
	Modeled Semantics
	Classification Semantics

	4D, Requirements
	“3D/4D” Modeling Defined
	“3D” (Snap)
	“4D” (Span)
	4D (space-time)
	“3D / 4D” / 4D Compared
	UML: Not much “4D”
	4D Requirements

	4D Solution, 1
	Without and Within
	Without and Within (M1)
	Object & Behavior Terms

	4D Solution, 2
	Portions and Slices
	Space Slices
	Composition (Integral)
	Composition (Portional)
	Portions (M1)
	Time Slices (M1)
	Time Slices (M2)
	4D, Multi-object
	4D, Multi-object (M1)

	Snapshots
	Snapshots (M1)
	Start/Endshots
	Start/Endshots (M1)
	Object Terms,�Behavior Specializations

	Link Occurrences
	Links (M1 & M2)
	Link Occurrences (M1)
	Transfers (M1)
	Transfers as Links (M1)
	Transfers (M2)
	Transfers & I/O (M2)
	Transfer & I/O Semantics
	Transfer & I/O Semantics (#1)
	Transfer & I/O Semantics (#2)

	4D TBD
	Summary
	Past ADTF Intro Slides
	More Information

